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Popular research topics

Deep / Bayes Learning

Deep (Neural Nets) & Bayesian Learning

Popularity of topics

1987
Deep /Bayes A
CNNs prior
RNNs posterior
dropout generative g
batch norm. MCMC 1
G & il Y.
Geoffrey Hinton Thomas Bayes

Figures adapted from Teh’s talk at NIPS 2017
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Increasing flexibility for representations

Deep / Bayes Learning

Deep Learning Bayesian Learning

|

. . |
I
I
|

Input Output ® T~

Shallow models (e.g., logistic regression) Point estimate (e.g., SGD)

Input Hidden Output

o—o—-9o /

Deep models (e.g., multi-layer perceptron) Full distribution (e.g., MCMC)
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Towards Better Representations

Deep / Bayes Learning

Representation
Learning

Q: Bring the best of both worlds?
A: New research topics:
® Bayesian Deep Learning
Scalable Bayesian methods for the weight uncertainty of DNNs
® Deep Bayesian Learning
DNNs as flexible representation methods in Bayesian models.

== Dayesian
Learning

Increasing Flexibility <:|1 Increasing Complexity

Seek further understanding?
e [ntrinsic Dimension of Objective Landscape
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Problem Setup

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets

e Given data D = {dz}z_1 : d; = (z;,vy;) in DNNG,
e A model with parameters @

N
p(0)D) o p(8) 1[;Z; p(dil0)
N—— N~~~ N——
Posterior Prior Likelihood

4—[ Observations }
—[ Actions ]—>

e For testing input, Bayesian predictive distribution

p(y|z, D) = Epeip) [p(y]2, 0)]
Figures adapted from Teh’s talk at NIPS 2017
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Agent Environment
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Bayesian vs Optimization
pSGLD
Bayesian Neural Nets

The Pitfall of Stochastic Optimization

e In optimization, the single "“best” point on training is used

Orap = argmaxg log p(@|D) = argmaxg U (0)

: Weight with a fixed value

\(;v\
/ |

Z log p(d;|6) — log p(0)

1 / > %
= N ——
loss function regularizer X \ .

Stochastic approximation U (0) =~ U (@)

e The MAP approximates this expectation as

p(y|z, D) = Epp)p(y|7, 0)] ~ p(y|T, Onarp)

Parameter uncertainty is ignored
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Bayesian vs Optimization
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M : Bayesian Neural Nets
Intrinsic Dimension

Large-scale Bayesian Learning

e In Bayesian, the full posterior distribution after observing training set is used

: Weight with a distribution
SG-MCMC

SG-VI

_ _ S-EP -
Requirements: 4 y\

= Accurate approximation
= Scalability to large datasets

e Samples are used for prediction

p(ylz, D) = By [p(ylz, 0)] ~ %= S°,_, plylz, 6;)
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SGLD vs. SGD

e Stochastic Gradient Langevin Dynamics (SGLD) draws samples:

Orr1 =0 — etft +V26:&;

where
@ Step size: et
@ Stochastic gradient: f, = VU;(0)

@ Gaussian noise: &, ~ N(0,1)

e SGLD 1s the SG-MCMC analog to SGD

9t+1 — 9t — tht
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Sampling Procedure of SGLD

trajectory

Sampling Dynamics Approximated Histogram
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Stochastic Gradient MCMC vs Optimization

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets

Algorithms | SG-MCMC Optimization
Basic SGLD SGD
Precondition pSGLD Adam/RMSprop/Adagrad
Momentum SGHMC SGD with momentum
Thermostat SGNHT Santa

C Li, C Chen, D Carlson, L Carin. AAAI 2016. Oral Presentation
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks

C Chen, D Carlson, Z. Gan, C Li, L Carin. AISTATS 2016. Oral Presentation
Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization
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Preconditioned SGLD

@ Preconditioner: approximate geometry information.

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets

@ Preconditioner constructed as diagonal matrix.

@ Adjust the step size, according the local geometry.

{03 103

Any preconditioning optimization algorithms (eg, RMSprop/Adagrad/K-FAC)
as scalable sampling methods
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Toy distribution

° N( [ 8 } : [ g (1) } ) The goal is to estimate the covariance matrix.

@ When the covariance matrix of a target distribution is mildly rescaled, we do
not have to choose a new step size for pSGLD.

SGLD] PSGLD | ¢ sap] | ] pSGLD | | SGLD] [ pSGLD |
. . _ sl |5l _ . | sl .
A # (B R : :
3] % b o i e ) S
by \.i 2 e 2y ~ Py
o (e L 5 i 3 S ‘i
i 5 3 0 ; > 0 : TE P
138 3 "‘ ; . % 3 . ; ‘; "*‘ 5 ” 15
" b o ;ﬂ M ?"”‘ *\"h ‘{3’
(3/# i 2} % W PYRE -
ey 3t
. i - ! -4 . . : -4 : R . ; . - N
4 -2 0 2 0 2 4 2 0 2 -4 0 2 4 2 0 2 -4 0 2 4
X X X X X X
(a) a =0.16,¢ = 0.3 (b) Scale up a = 2,¢ =0.3 (c¢) Scale down a = 0.5,¢ = 0.3
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Applications to Deep Neural Nets

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets

d Modern architectures and domains
® CNNs in Computer Vision
® RNNs in Natural Language Processing

1 Advantages
e Prevent Over-fitting
e Uncertainty in Predictions

C Li, A Stevens, C Chen, Y Pu, Z. Gan, L Carin. CVPR 2016, Spotlight Presentation
Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification

7. Gan*, C Li*, C Chen, Y Pu, Q Su, L Carin. ACL 2017, Oral Presentation
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
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Advantage 1: Prevent Over-fitting

 Interpretation of Dropout
® Gaussian Dropout as SG-MCMC
e Binary Dropout combined with SG-MCMC

dropout C dropconnect, Binary dropout =~ Gaussian dropout

By combining dropConnect and Gaussian corruption, the update rule:

€ ~ € ~
9t+1:€0@9t_§ft:9t_§ft+€67

where £ ~ N (0, ﬁdiag(@%))

@ In training: Dropout/DropConnect and SGLD share the same form of
update rule, with the difference being that the level of injected noise is
different

@ In testing: Bayesian model averaging; Fast approximation in Dropout
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Advantage 1: Prevent Over-fitting

d Performance
e Optimization converges faster on training, but overfit
e Uncertainty learned in training prevent over-fitting on testing

Train ] - Test

RMSprop
RMSprop + Dropout
pSGLD i 0.20 -

0.25 -

0.20 -

II

pSGLD + Dropout

0.15 -
0.15 -

Error
Error

0.10 -

0.10 -
0.05 -

0.00 - | \ w - 5 10 15

5 10 15
#Epoch #Epoch
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Advantage 2: Uncertainty in Prediction

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets

(J Beyond Prediction Means
e Uncertainty is the std of multiple predictions
e High uncertainty predictions tend to be on the boundary of mainfolds

-W* ?

t-SNE embedding of prediction mean and std
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Deep Bayesian Learning

C Li, HLiu, C Chen, Y Pu, L. Chen, R Henao, L Carin. NIPS 2017
ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching
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Intrinsic Dimension Results

Deep Generative Models

T'l: Latent Variable Inference 12: Sample generation

Latent
:
|
|
\
@ Observation @

Variational Autoencoders Generative Adversarial Networks

(VAE) (GAN)
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Adversarial Learning for Distribution Matching

B Adversarially Learned Inference (ALI) @ p(2)
ALI: Discriminator takes in pair-wise samples:(w, 2) and(fﬁ,z) q¢(z |$)
Joint distribution matching: p(x, z) = q(x, 2) po(x|2)
q(x)

GAN: Discriminator takes in samples: ¢ and

Marginal distribution matching: p(x) = ¢(x) ‘ pe(x) = [ po(x|z)p(z)dz

Importan details: Universal distribution approximators for the sampling procedure
of conditionals & ~ pg(x|z) and Z ~ g4(z|x) are carried out as:

ge(zae)a z NP(Z), € NN(O,I), and
g¢(m7C)7 €L ~ Q(w)v C NN(O7 I)a

Chunyuan Li 20/40

T
z



Introduction Non-identifiable Issues
Bayesian Deep Learning ALICE
Deep Bayesian Learning A Unified View

Intrinsic Dimension Results

Non-identifiable Issues

O Joint distribution matching as shape matching of two probability measures

Issues: The correlation between @ and z is not specified.

Chunyuan Li 21/40
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Non-identifiable Issues

Problem llustration Any 6 <0, 1] is a valid solution of ALI ?!

“realistic”  from any sample of
p(2z), but with poor reconstruction.

21 29
«In (a), for 0<d< 1, we can generate FJ\><1

BN

1 L9

21 29
L1 | 2 |(1-6)2
o |1-6)/2| &2

(2)

Many applications require meaningful mappings.
® In unsupervised learning, the inferred latent code can reconstruct its x itself with
high probability. 6 — 1 ord — 0

Chunyuan Li 21/40
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Non-identifiable Issues

Problem llustration Any 6 <0, 1] is a valid solution of ALI ?!
21 29 21 29
__l __l V\)<A
h A £\
Zy &2 ) Ly &I
«In (b) =1 or (c) =0, only one o 2| 2| 2
the solutions will be meaningful in 1 1/3 10 e ° 2/2
supervised learning. 22 2] %2
(b) (c)

Many applications require meaningful mappings.

® In supervised learning, the task-specified correspondence between samples imposes
restrictions on the mappings.

Chunyuan Li 22/40
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ALICE

Adversarially Learned Inference with Conditional Entropy (ALICE)
Ipin max Larice(0, ¢, w) = Lau(0, p,w) + Lce(6, @)

. § . . y 1
Our ALICE Objective ALI Objective CE Regularizer ( )
 CE enforces correlation between random variables
CE is intractable in practice o »
o Four algorithms are proposed to bound or approximate CE

Code:

https://github.com/ChunyuanLI/ALICE

Chunyuan Li 23/40
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Unsupervised Learning

In unsupervised learning, cycle-consistency is considered to upperbound CE:
o Explicit cycle-consistency Prescribed the distribution forms, e.g. £;-norm
® Implicit cycle-consistency Adversarially learned “perfect” reconstruction

%l’lqgl max ‘Céycle(ev b, n) — fBNC] [log O(fn(m {.B))] (2)

+ E@~pe(§:|z),z~q¢(z|w) k)g(l o U(fﬂ(wa ﬁ:)))]

H(2) + oy [KL(Go(@]2) [po(x]2))] = ~Eqy(o.0 1o po(]2)]

~~ ~ ~

-~

Conditional entropy Conditional distribution matching Cycle consistency

d Comments
e Explicit method is easy to train, but could generate “blurred” samples
e /mplicit method is difficult to train, but potentially more “realistic” samples

Chunyuan Li 24/40
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Semi-supervised Learning

In semi-supervised learning, the pairwise information is leveraged to approximate CE:
© Explicit mapping Prescribed the forms, £i-norm or standard supervised losses
® Implicit mapping Implicit mapping via conditional GAN

: A
min max Lpiap(0,X) =Eg 2ui(z,2)l0g o(fx (T, 2))

. (3)
+Ezpe(2]2) log(1 — o(fx(Z, 2)))].

Paired data <——— ALICE with cross-domain mappings

Unpaired data <—t— ALICE with cycle-consistency (when necessary)

Chunyuan Li 25/40
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A Unified Perspective

Joint distribution matching
Setup 4

Paired Samp|es Cond”-lonal GAN

Unpaired samples ALI/BiGAN CycleGAN/Disco6AN/DualGAN

—» Method

One-step Two-step
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A Unified Perspective

Joint distribution matching

[ ALI/BiGAN CycIeGAN/DiscoGAN/DualGANJ

—» Method

One-step Two-step

« ALl is equivalent to CycleGAN (Two GAN Losses + Two Cycle Losses)
CycleGAN is easier to train, as it decomposes the joint distribution matching
objective (as in ALI) into four subproblems.

H(@|z) + Eqgo[KL(gs(|2) [po(]2)] = ~Eyy(e mllogpole|)

Conditional entropy Conditional distribution matching Cycle consistency

Proof:

GAN Loss j Marginal Matching
CycleGAN { > —>  Joint Matching

CycleLoss ——> Conditional Matching H

Chunyuan Li
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A Unified Perspective

Joint distribution matching

Setup
t 4 )
Paired Samp|es Cond”'lonal GAN

Unpaired samples \ALI/BiGAN P

» Conditional GAN is doing joint distribution matching
When the optimum in (3) is achieved, 7(x, 2) = pg*(x, 2) = gp*(, 2).
One can leverage the empirically-defined distributions 7(x, z) implied by paired
data, to resolve the ambiguity issues in unsupervised bivariate GANs.

Proof:
mgn m)%x Ef‘/[ap(O, X) :Em,szr(m,z)[IOg O'(fX(CU, Z))
+Egnpy(a2) 108(1 — o (fx (&, 2

M i 77'(33,2) — Do~ (CB,Z)

Chunyuan Li
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A Unified Perspective

Joint distribution matching
Setup 4

Paired Samp|es Cond”-lonal GAN

Unpaired samples ALI/BiGAN CycleGAN/Disco6AN/DualGAN

—» Method

One-step Two-step

All these bivariate GAN models are learning to match the joint distributions:
either using different methods, or in different problem setups.

Chunyuan Li
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Results: Unsupervised Learning

Grid search over a set of hyper-parameters for 576 experiments

° g 10t 1 ALICE
&» 4 | T 100 ALl
10 DAEs
"" gs T 2102 }
- 2 3 f
(a) True & (b) True 2z (c) Inception Score (d) MSE
Figure: Generation (c) and reconstruction (d) results on toy data (a,b).
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Results: Unsupervised Learning

Sensitivity to hyper-parameters )\
Lavice = Larn1 + A Lok GenerationT Reconstructionl

5 6
" e 5
g4 w
"”: g 4 denoising auto-encoders
‘%_3 & ALl (w/o CE regularizer)
Toy dataset & 52
= true samples =
ALl (w/o CE regularizer
(w/ g ) 0 o
102 10! 100 10! 102 10! 100 10!
Weighting hyperparameter Weighting hyperparameter
(a) Toy dataset: image generation (b) Toy dataset: image reconstruction
10 0.6
©) ALl (w/o CE regularizer)
p 8 4
3 ‘904
s 6 S
2 &
8 4 <
M N I ST = true samples g 02
2 ALI (w/o CE regularizer) °
1074 1072 10° 107 10 10°* 1072 10° 10° 10
Weighting hyperparameter Weighting hyperparameter
(c) MNIST: image generation (d) MNIST: image reconstruction
61 @ 0.8
(3 E 0.6
5 iy
w4 L
S %0 4 ALl (w/o CE regularizer)
Aa v
g g
CIFAR-10 =, 202
ALl (w/o CE regularizer)
_ 0.0 ] o)
10— 103 10! 10! 108 10—° 103 10! 10! 10°
Weighting hyperparameter Weighting hyperparameter
(e) CIFAR: image generation (f) CIFAR: image reconstruction
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Results: Semi-supervised Learning

ALICE for painting the cartoon “Alice’s Wonderland”, based on edges

\ R - |
‘-"’ > ‘; 3 Alice

Rabbit

\ % g

. \ ’.'

Edge domain Cartoon domain
Training set: two domains (edges and cartoon) and two modes (Alice and Rabbit)

SOk
: A 8
" ., ’ \ ) . == O ==
\' il L. Code:

CycleGAN: mixing colors due to the non-identifiable issue https://github.com/ChunyuanL|/Alice4Alice
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Measure the Intrinsic Dimension of
Objective Landscapes

C Li, H Farkhoor, R Liu, J Yosinski. ICLR 2018
Measure the Intrinsic Dimension of Objective Landscapes
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Motivation

Deep/Bayesian learning achieves better representations via increasing model complexity

Goodness of fit Choose architectures

Dataset > Neural Nets
(7,y) <+

Increase model parameters for better fitting

How many parameters are really needed?
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Objective Landscapes

N
0 Objective: U(6,D) 2 —Zlogp(diw) ~log p(6)
=1 Y,
Y .
loss function regularizer

e Datasets: D = {dz'}ff\;1 d; = (xz,yz)

e Neural Nets: 0 € RD

One Example of Objective Landscapes

U(8,D) -

\_

Chunyuan Li 32/40
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Direct vs. Subspace Training

Direct Training: Training in the Original Weight Space

T Neural Nets >y

Subspace Training: Training in a Low Dimensional Orthogonal Space

SGD
Momentum
NAG
Adagrad
Adadelta

Rmsprop

92) = g(P) 4 pe(@

I

Subspace parameters

Forward Projection| | Backward Propagation

Y

>

Chunyuan Li
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Intrinsic dimension

As we increase d, we generally observe a sharp increase in network
performance. This d is the Intrinsic Dimension !

g L
o

~ d= dint
d=1 Low performance High performance d=2D .
& O
— SubspaCt dimension -’
1d random line search:; The entire space is spannedq,
Hard to find a good solution Any available solutions can be discovered

Chunyuan Li 33/40
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A Toy Problem

O A simple objective with 1000 parameters to optimize:
J(0) = 32,21 11 = 3200000 il

e 10 constraint: Provide the pair-wise fitting constraints
e Every 100 weights sumto one: Provide the functional constraints

—
L

—
L

& O o o
- - -’
1.00+ [ _seeee) O O O
\d d 10
= int90 — ®@int100 —
g 0.751
S
E 0.501
o
(a8
0.251
OO performance = exp(-loss)
0.001{ G3333330
0 10 20 30 40 50

Subspace dim d

1 Generalize the concept to Neural Nets:
e Datasets: Provide the pair-wise fitting constraints
e Neural Nets Architectures: Provide the functional constraints
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Intrinsic Dimension

Some networks are very compressible

O 2-layer Fully Connected Networks (FC) on MNIST

BEEE o 24 ?0019230’ 21100 Redundancy of the solution
L —d
DEN ~~——»&m>ﬁ«»ﬂ dlnt =750 —+ S>D dmt

e 750 is less than the number

1O — — of input pixels (784)
> 2assc===csssssadh b ST (A lot of image pixels are always black)
c 0.8
S . .
S 06 e High compression rate:
2 0.4%. Storage only requires
=2 0.4 , 750 parameters + 1 seed
= — baseline

ool 90% baseline . .

- ¢ Highly redundant solution:

0 200 400 600 800 1000 1200 1400 S> 198.460
Subspace dim d ’
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Robustness of intrinsic dimension

width 50, depth 1 width 400, depth 5

=

d MNIST with 20 different FC's

o
©

Validation accuracy

Depth={1,2,3,4,5} o0 4
0410
Width={50,100,200,400} 021 sl
? 500 19'00 1500 L(? 500 1000 1500
Subspace dim d Subspace dim d
1400 —————— 5.0
_ 13001 layerwidth | .3
&
Ss12001 20 4.0
c e 100
211001 ‘ 33
51000 ‘ s 2% ‘ 30%
on ! E @ 400 | CD 8
F. % 900+ 6 2.5
£ 800 IIL % s ® ¢ é ©) ® 2.0
€ L0 (] 15
600 1.0

10°

10°
Number of parametersD 8 factor Of 24_1

¢ A stable metric across a family of models
e Every extra parameter added to the native space just goes directly toward
increasing the redundancy of the solution set
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Subspace Training
Definition and Property
Quantitative Metrics

d Objective: U (0, D)

e Fitness of Network Architectures
Fixing the dataset, d_int indicates the fitness of network architectures to the tasks.

Case Study:
To achieve >50% validation accuracy on CIFAR,

FC, LeNet and ResNet approximately requires d_int as 9K, 2.9K and 1K, respectively.

e Difficulty of Tasks/Datasets

Fixing the architecture, d_int indicates the difficulty level of specific tasks

Case Study:
The intrinsic dimension of 2-layer FC for

MNIST and CIFAR is 750 and 9K, respectively.

Shuffled-label MNIST: 190K ; ImageNet: >800K
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Policy-based RL

Evolutionary Strategies (ES)

Subspace Training
Definition and Property
Quantitative Metrics

3 5 o 8000 - 1000 ——— @O~ O~ OO0
Y PP @ T E 7000 deerererreererererresrerereriseedereriess b L ®. T R
S 800
T 0] qg_) 6000 A (@) 5
H = s
c 57 o) S 50001 O S 600
5 © g =
ERRS S 4000 4 T
s © © 400
s 5 > 3000 A g
| T 5 :
o & 2000 2 200
-] m 2
19 10004 @O O © 0O
20 1 . . . . ; . . 04 O
20! 1000 6000 8000 10000 100 200 300 400 500 600 700 2 4 6 s 10
Subspace dim d Subspace dim d Subspace dim d
d. . = 6.000~CFR di; = 700 ~MNIST d,. =4
int ’ int 1n

The low d;,; suggests why random search and gradient-free methods work
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Recent Development

Subspace Training
Definition and Property
Quantitative Metrics

1 Applications to Guiding Model Selection
D. Shen et al. ACL 2018. Baseline Need More Love: On Simple Word-Embedding-Based Models (SWEM)

0.9

. Q(J'b
5090 —o— SWEM S 0.7 —0— SWEM
< —0O— CNN < —O— CNN
089/ e SWEM direct o6{ o5 - SWEM direct
------ CNN direct ------ CNN direct
0.8 ‘ -
70 2 i 6 8 10 U575 200 400 600 800 1000
Subspace dim d Subspace dim d
Training embedding Fixing embedding

J More Resource

e UBER Blog: Ktips://eng.uber.com/intrinsic-dimension/
. % Code: https://github.com/uber-research/intrinsic-dimension
e YouTube Video
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Summary: Learning Trajectory

" Machine Learning
-
(Scalable) A Sc?g:vlim Deep \
Bayesian S-EP [earning
Learning \"*/
/' Computer ¥ ,
. Generative
Graphics Models
\ |
C T — —
\—/
Computer
Vision NI
|
\ \ J

Reinforcement Iearning
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The end

Thanks!
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