Towards Better Representations with Deep/Bayes Learning

Chunyuan Li

Duke University

http://chunyuan.li

1. Motivations

2. Bayesian Deep Learning

- Stochastic Gradient MCMCs
- Weight uncertainty in DNNs
- Connection to Dropout

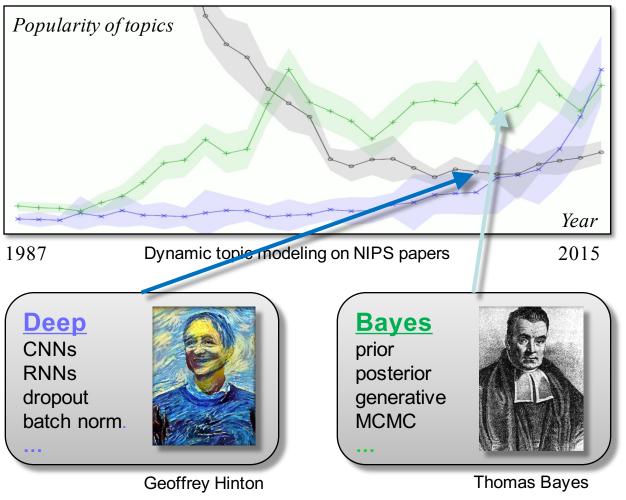
3. Deep Bayesian Learning

- Non-identifiable issues
- ALICE algorithms
- Unified views for bivariate GANs
- 4. Intrinsic Dimension of Objective Landscape
 - Definitions
 - Empirical Results
- 5. Summary

Deep / Bayes Learning

Popular research topics

Deep (Neural Nets) & **Bayesian** Learning



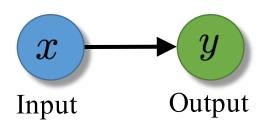
Figures adapted from Teh's talk at NIPS 2017

Deep / Bayes Learning

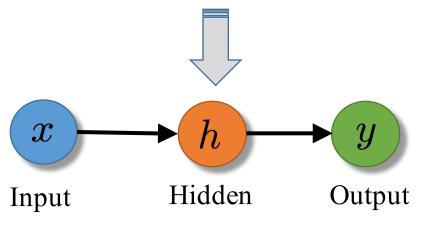
Increasing flexibility for representations

Deep Learning

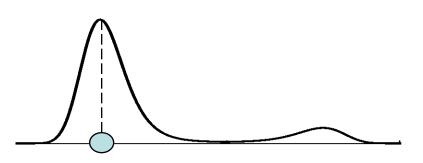
Bayesian Learning



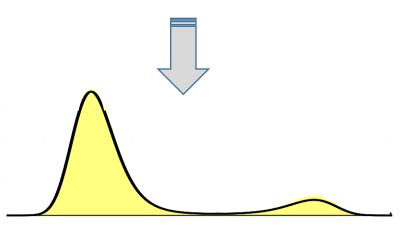
Shallow models (e.g., logistic regression)



Deep models (e.g., multi-layer perceptron)



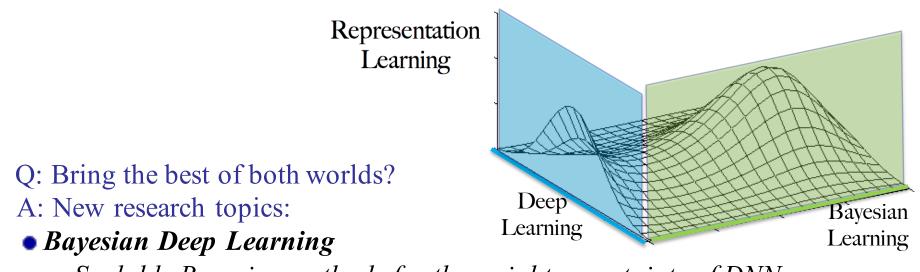
Point estimate (e.g., SGD)



Full distribution (e.g., MCMC)

Deep / Bayes Learning

Towards Better Representations



Scalable Bayesian methods for the weight uncertainty of DNNs

Deep Bayesian Learning

DNNs as flexible representation methods in Bayesian models.

Increasing Flexibility Increasing Complexity

Seek further understanding?

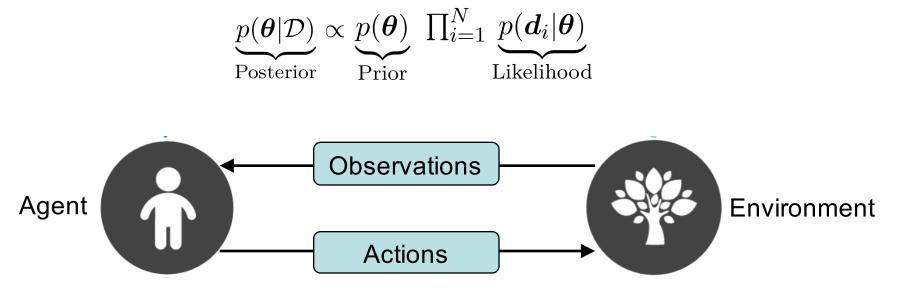
• Intrinsic Dimension of Objective Landscape

Bayesian Deep Learning

Bayesian vs Optimization pSGLD Bayesian Neural Nets

Problem Setup

- Given data $\mathcal{D} = \{ \boldsymbol{d}_i \}_{i=1}^N$; $\boldsymbol{d}_i \triangleq (x_i, y_i)$ in DNNs,
- A model with parameters $\boldsymbol{\theta}$



• For testing input, Bayesian predictive distribution

$$p(y|x, \mathcal{D}) = \mathbb{E}_{p(\theta|\mathcal{D})}[p(y|x, \theta)]$$

Figures adapted from Teh's talk at NIPS 2017

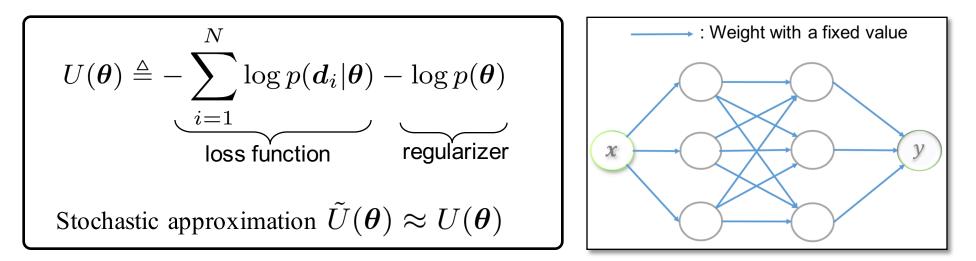
Bayesian vs Optimization pSGLD Bayesian Neural Nets

8/40

The Pitfall of Stochastic Optimization

• In optimization, the single ``best" point on training is used

 $\boldsymbol{\theta}_{MAP} = \operatorname{argmax}_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta} | \mathcal{D}) = \operatorname{argmax}_{\boldsymbol{\theta}} U(\boldsymbol{\theta})$



• The MAP approximates this expectation as

$$p(y|x, \mathcal{D}) = \mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D})}[p(y|x, \boldsymbol{\theta})] \approx p(y|x, \boldsymbol{\theta}_{MAP})$$

Parameter uncertainty is ignored

Bayesian vs Optimization pSGLD Bayesian Neural Nets

Large-scale Bayesian Learning

• In Bayesian, the full posterior distribution after observing training set is used



• Samples are used for prediction

$$p(y|x, \mathcal{D}) = \mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D})}[p(y|x, \boldsymbol{\theta})] \approx \frac{1}{T} \sum_{t=1}^{T} p(y|x, \boldsymbol{\theta}_t)$$

Bayesian vs Optimization **pSGLD** Bayesian Neural Nets

SGLD vs. SGD

• Stochastic Gradient Langevin Dynamics (SGLD) draws samples:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \epsilon_t \tilde{\boldsymbol{f}}_t + \sqrt{2\epsilon_t} \boldsymbol{\xi}_t$$

where

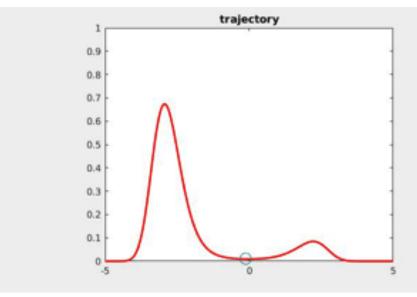
- Step size: ϵ_t
- Stochastic gradient: $\tilde{f}_t = \nabla \tilde{U}_t(\theta)$
- Gaussian noise: $\boldsymbol{\xi}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

• SGLD is the SG-MCMC analog to SGD

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \epsilon_t \tilde{\boldsymbol{f}}_t$$

Bayesian vs Optimization **pSGLD** Bayesian Neural Nets

Sampling Procedure of SGLD



Sampling Dynamics

Approximated Histogram

Bayesian vs Optimization **pSGLD** Bayesian Neural Nets

Stochastic Gradient MCMC vs Optimization

Algorithms	SG-MCMC	Optimization
Basic	SGLD	SGD
Precondition	pSGLD	Adam/RMSprop/Adagrad
Momentum	SGHMC	SGD with momentum
Thermostat	SGNHT	Santa

<u>C Li</u>, C Chen, D Carlson, L Carin. AAAI 2016. Oral Presentation Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks

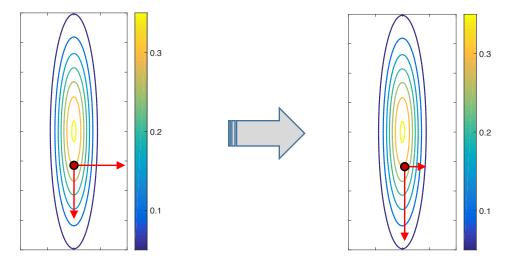
C Chen, D Carlson, Z. Gan, <u>C Li</u>, L Carin. **AISTATS** 2016. Oral Presentation Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization

Bayesian vs Optimization **pSGLD** Bayesian Neural Nets

Preconditioned SGLD

Leverage historical gradients to construct a preconditioner

- Preconditioner: approximate geometry information.
- Preconditioner constructed as diagonal matrix.
- Adjust the step size, according the local geometry.



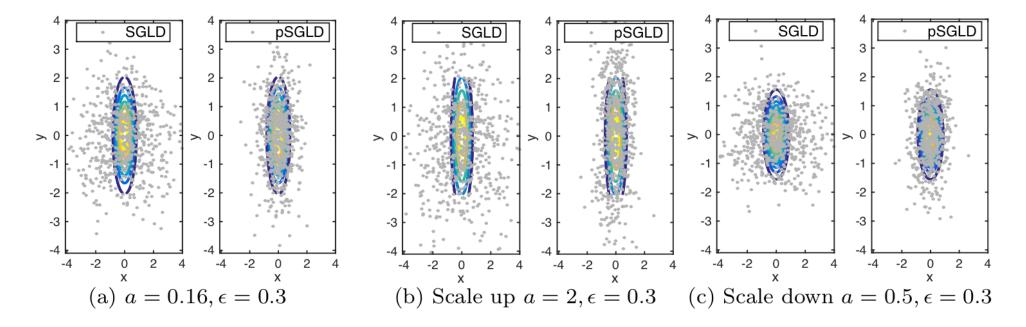
Any preconditioning optimization algorithms (eg, RMSprop/Adagrad/K-FAC) as scalable sampling methods

Bayesian vs Optimization **pSGLD** Bayesian Neural Nets

Toy distribution

• $\mathcal{N}\left(\begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} a & 0\\0 & 1 \end{bmatrix} \right)$. The goal is to estimate the covariance matrix.

• When the covariance matrix of a target distribution is mildly rescaled, we do not have to choose a new step size for pSGLD.



Bayesian vs Optimization pSGLD **Bayesian Neural Nets**

Applications to Deep Neural Nets

Modern architectures and domains

- CNNs in Computer Vision
- RNNs in Natural Language Processing

Advantages

- Prevent Over-fitting
- Uncertainty in Predictions

<u>C Li</u>, A Stevens, C Chen, Y Pu, Z. Gan, L Carin. **CVPR** 2016, **Spotlight Presentation** Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification

Z. Gan^{*}, <u>C Li^{*}</u>, C Chen, Y Pu, Q Su, L Carin. ACL 2017, Oral Presentation Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling

Advantage 1: Prevent Over-fitting

Interpretation of Dropout

- Gaussian Dropout as SG-MCMC
- Binary Dropout combined with SG-MCMC

dropout \subset dropconnect, Binary dropout \approx Gaussian dropout By combining dropConnect and Gaussian corruption, the update rule:

$$oldsymbol{ heta}_{t+1} = oldsymbol{\xi}_0 \odot oldsymbol{ heta}_t - rac{\epsilon}{2} ilde{oldsymbol{f}}_t = oldsymbol{ heta}_t - rac{\epsilon}{2} ilde{oldsymbol{f}}_t + oldsymbol{\xi}_0'$$

where $\boldsymbol{\xi}_0' \sim \mathcal{N}\left(0, \frac{p}{(1-p)} \text{diag}(\boldsymbol{\theta}_t^2)\right)$

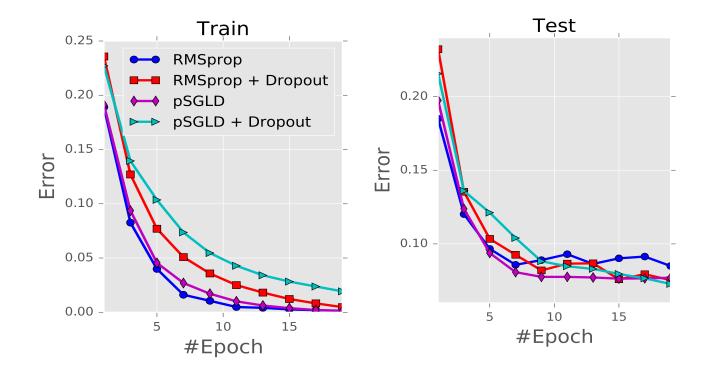
- In training: Dropout/DropConnect and SGLD share the same form of update rule, with the difference being that the level of injected noise is different
- In testing: Bayesian model averaging; Fast approximation in Dropout

Bayesian vs Optimization pSGLD **Bayesian Neural Nets**

Advantage 1: Prevent Over-fitting

Performance

- Optimization converges faster on training, but overfit
- Uncertainty learned in training prevent over-fitting on testing

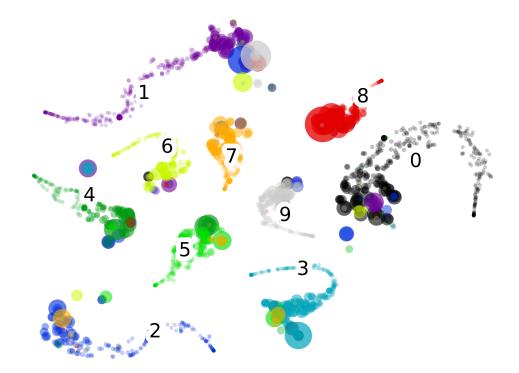


Bayesian vs Optimization pSGLD Bayesian Neural Nets

Advantage 2: Uncertainty in Prediction

Beyond Prediction Means

- Uncertainty is the std of multiple predictions
- High uncertainty predictions tend to be on the boundary of mainfolds



t-SNE embedding of prediction mean and std

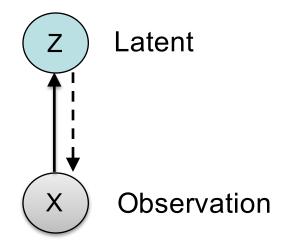
Deep Bayesian Learning

<u>**C**Li</u>, H Liu, C Chen, Y Pu, L. Chen, R Henao, L Carin. **NIPS** 2017 ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching

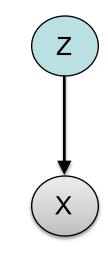
Non-identifiable Issues ALICE A Unified View Results

Deep Generative Models

T1: Latent Variable Inference



T2: Sample generation



Variational Autoencoders (VAE)

Generative Adversarial Networks (GAN)

Non-identifiable Issues ALICE A Unified View Results

Adversarial Learning for Distribution Matching

Adversarially Learned Inference (ALI)

ALI: Discriminator takes in pair-wise samples $(m{x}, ilde{m{z}})$ and $(ilde{m{x}}, m{z})$

Joint distribution matching: $p(oldsymbol{x},oldsymbol{z}) = q(oldsymbol{x},oldsymbol{z})$

GAN: Discriminator takes in samples: $oldsymbol{x}$ and $ilde{oldsymbol{x}}$

Marginal distribution matching: $p(\boldsymbol{x}) = q(\boldsymbol{x})$

$$\begin{array}{c|c} \mathbf{z} & p(\mathbf{z}) \\ q_{\boldsymbol{\phi}}(\mathbf{z} | \mathbf{x}) & & \\ \mathbf{z} & p_{\boldsymbol{\theta}}(\mathbf{z} | \mathbf{z}) \\ q(\mathbf{x}) & \mathbf{x} \end{array}$$

 $p_{\theta}(\boldsymbol{x}) = \int p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) p(\boldsymbol{z}) \mathrm{d}\boldsymbol{z}$

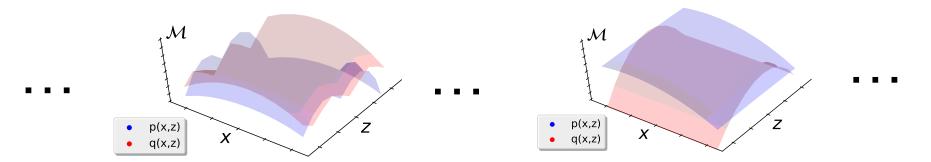
Importan details: Universal distribution approximators for the sampling procedure of conditionals $\tilde{\boldsymbol{x}} \sim p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})$ and $\tilde{\boldsymbol{z}} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})$ are carried out as:

$$\begin{split} \tilde{\boldsymbol{x}} &= g_{\boldsymbol{\theta}}(\boldsymbol{z}, \boldsymbol{\epsilon}), \ \boldsymbol{z} \sim p(\boldsymbol{z}), \ \boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}), \text{ and} \\ \tilde{\boldsymbol{z}} &= g_{\boldsymbol{\phi}}(\boldsymbol{x}, \boldsymbol{\zeta}), \ \boldsymbol{x} \sim q(\boldsymbol{x}), \ \boldsymbol{\zeta} \sim \mathcal{N}(0, \mathbf{I}), \end{split}$$

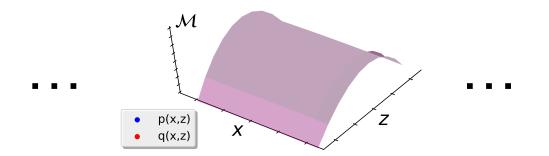
Non-identifiable Issues ALICE A Unified View Results

Non-identifiable Issues

□ Joint distribution matching as shape matching of two probability measures



□ The matched joint distribution can still have arbitrary shape



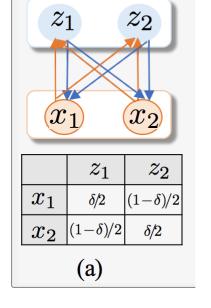
Issues: The correlation between x and z is not specified.

Non-identifiable Issues ALICE A Unified View Results

Non-identifiable Issues

Problem Illustration

 In (a), for 0<δ<1, we can generate "realistic" *x* from any sample of *p(z)*, but with poor reconstruction.



Many applications require meaningful mappings.

1 In unsupervised learning, the inferred latent code can reconstruct its x itself with high probability. $\delta \to 1$ or $\delta \to 0$

Chunyuan Li

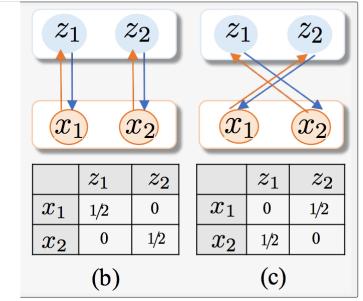
Any $\delta \in [0, 1]$ is a valid solution of ALI ?!

Non-identifiable Issues ALICE A Unified View Results

Non-identifiable Issues

Problem Illustration

Any $\delta \in [0, 1]$ is a valid solution of ALI ?!



 In (b) δ=1 or (c) δ=0, only one o the solutions will be meaningful in supervised learning.

Many applications require meaningful mappings.

In supervised learning, the task-specified correspondence between samples imposes restrictions on the mappings.

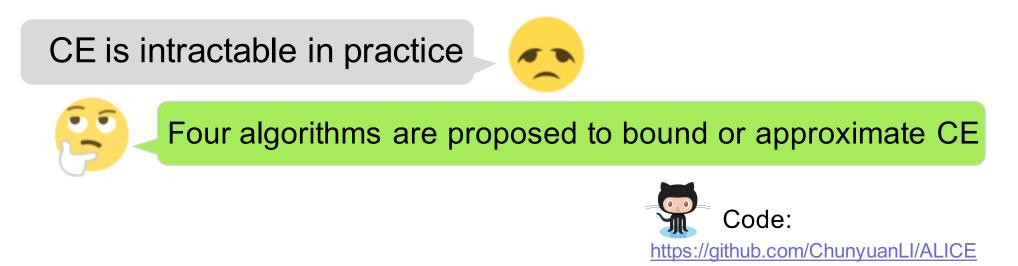
Non-identifiable Issues ALICE A Unified View **Results**

Adversarially Learned Inference with Conditional Entropy (ALICE)

 $\min_{\boldsymbol{\theta},\boldsymbol{\phi}} \max_{\boldsymbol{\omega}} \ \underline{\mathcal{L}}_{\text{ALICE}}(\boldsymbol{\theta},\boldsymbol{\phi},\boldsymbol{\omega}) = \underline{\mathcal{L}}_{\text{ALI}}(\boldsymbol{\theta},\boldsymbol{\phi},\boldsymbol{\omega}) + \mathcal{L}_{\text{CE}}(\boldsymbol{\theta},\boldsymbol{\phi}) \,.$ Our ALICE Objective ALI Objective

CE Regularizer

CE enforces correlation between random variables



Chunyuan Li

(1)

Non-identifiable Issues **ALICE** A Unified View Results

Unsupervised Learning

In unsupervised learning, cycle-consistency is considered to upperbound CE: **1** Explicit cycle-consistency Prescribed the distribution forms, *e.g.* ℓ_k -norm **2** Implicit cycle-consistency Adversarially learned "perfect" reconstruction

$$\min_{\boldsymbol{\theta},\boldsymbol{\phi}} \max_{\boldsymbol{\eta}} \mathcal{L}_{Cycle}^{A}(\boldsymbol{\theta},\boldsymbol{\phi},\boldsymbol{\eta}) = \mathbb{E}_{\boldsymbol{x} \sim q(\boldsymbol{x})}[\log \sigma(f_{\boldsymbol{\eta}}(\boldsymbol{x},\boldsymbol{x}))] \\ + \mathbb{E}_{\hat{\boldsymbol{x}} \sim p_{\boldsymbol{\theta}}(\hat{\boldsymbol{x}}|\boldsymbol{z}), \boldsymbol{z} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \log(1 - \sigma(f_{\boldsymbol{\eta}}(\boldsymbol{x},\hat{\boldsymbol{x}})))].$$
(2)

$$\underbrace{H^{q_{\phi}}(\boldsymbol{x}|\boldsymbol{z})}_{\text{Conditional entropy}} + \underbrace{\mathbb{E}_{q_{\phi}(\boldsymbol{z})}[\text{KL}(q_{\phi}(\boldsymbol{x}|\boldsymbol{z})||p_{\theta}(\boldsymbol{x}|\boldsymbol{z}))]}_{\text{Conditional distribution matching}} = \underbrace{-\mathbb{E}_{q_{\phi}(\boldsymbol{x},\boldsymbol{z})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})]}_{\text{Cycle consistency}}$$

Comments

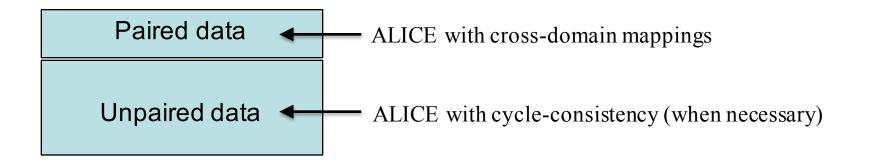
- Explicit method is easy to train, but could generate "blurred" samples
- Implicit method is difficult to train, but potentially more "realistic" samples

Non-identifiable Issues **ALICE** A Unified View Results

Semi-supervised Learning

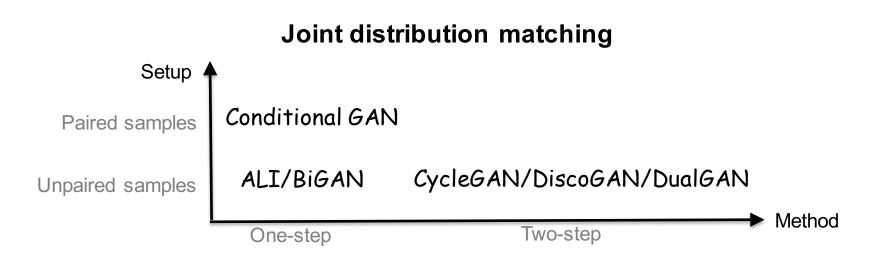
In semi-supervised learning, the pairwise information is leveraged to approximate CE: **1** Explicit mapping Prescribed the forms, ℓ_k -norm or standard supervised losses **2** Implicit mapping Implicit mapping via conditional GAN

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\chi}} \mathcal{L}_{Map}^{A}(\boldsymbol{\theta}, \boldsymbol{\chi}) = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{z} \sim \tilde{\pi}(\boldsymbol{x}, \boldsymbol{z})} [\log \sigma(f_{\boldsymbol{\chi}}(\boldsymbol{x}, \boldsymbol{z})) + \mathbb{E}_{\hat{\boldsymbol{x}} \sim p_{\boldsymbol{\theta}}(\hat{\boldsymbol{x}} | \boldsymbol{z})} \log(1 - \sigma(f_{\boldsymbol{\chi}}(\hat{\boldsymbol{x}}, \boldsymbol{z})))].$$
(3)



Non-identifiable Issues ALICE **A Unified View** Results

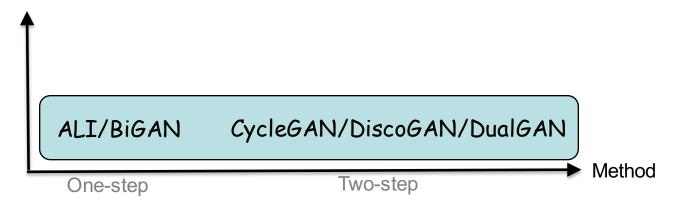
A Unified Perspective



Non-identifiable Issues ALICE **A Unified View** Results

A Unified Perspective

Joint distribution matching



• ALI is equivalent to CycleGAN (Two GAN Losses + Two Cycle Losses)

CycleGAN is easier to train, as it decomposes the joint distribution matching objective (as in ALI) into four subproblems.

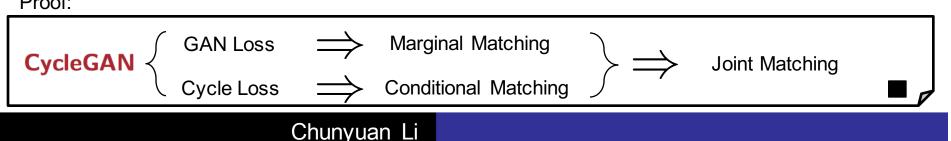
$$\underbrace{\mathbb{H}^{q_{\phi}}(\boldsymbol{x}|\boldsymbol{z})}_{\boldsymbol{\mu}_{\phi}(\boldsymbol{z})} + \underbrace{\mathbb{E}_{q_{\phi}(\boldsymbol{z})}[\mathrm{KL}(q_{\phi}(\boldsymbol{x}|\boldsymbol{z})||p_{\theta}(\boldsymbol{x}|\boldsymbol{z}))]}_{\boldsymbol{\mu}_{\phi}(\boldsymbol{x}|\boldsymbol{z})} = \underbrace{-\mathbb{E}_{q_{\phi}(\boldsymbol{x},\boldsymbol{z})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})]}_{\boldsymbol{\mu}_{\phi}(\boldsymbol{x}|\boldsymbol{z})}$$

Conditional entropy

Conditional distribution matching

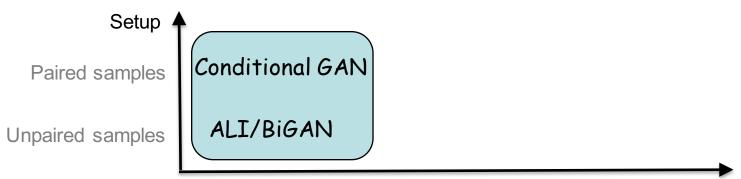
Cycle consistency

Proof:



Non-identifiable Issues ALICE **A Unified View** Results

A Unified Perspective



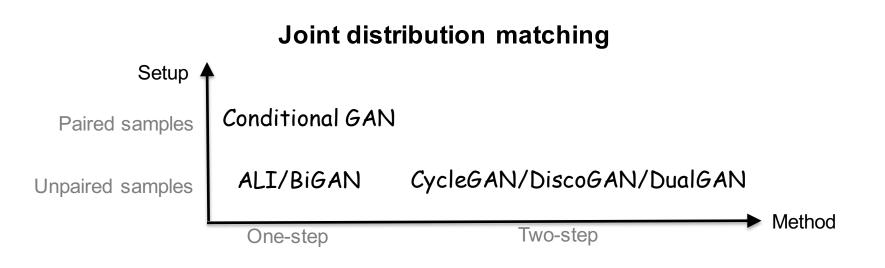
Conditional GAN is doing joint distribution matching

When the optimum in (3) is achieved, $\tilde{\pi}(\boldsymbol{x}, \boldsymbol{z}) = p_{\boldsymbol{\theta}^*}(\boldsymbol{x}, \boldsymbol{z}) = q_{\boldsymbol{\phi}^*}(\boldsymbol{x}, \boldsymbol{z})$. One can leverage the empirically-defined distributions $\tilde{\pi}(\boldsymbol{x}, \boldsymbol{z})$ implied by paired data, to resolve the ambiguity issues in unsupervised bivariate GANs.

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\chi}} \mathcal{L}_{Map}^{A}(\boldsymbol{\theta}, \boldsymbol{\chi}) = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{z} \sim \tilde{\pi}(\boldsymbol{x}, \boldsymbol{z})} [\log \sigma(f_{\boldsymbol{\chi}}(\boldsymbol{x}, \boldsymbol{z})) \\ + \mathbb{E}_{\hat{\boldsymbol{x}} \sim p_{\boldsymbol{\theta}}(\hat{\boldsymbol{x}} | \boldsymbol{z})} \log(1 - \sigma(f_{\boldsymbol{\chi}}(\hat{\boldsymbol{x}}, \boldsymbol{z})))] \implies \tilde{\pi}(\boldsymbol{x}, \boldsymbol{z}) = p_{\boldsymbol{\theta}^{*}}(\boldsymbol{x}, \boldsymbol{z})$$

Non-identifiable Issues ALICE **A Unified View** Results

A Unified Perspective

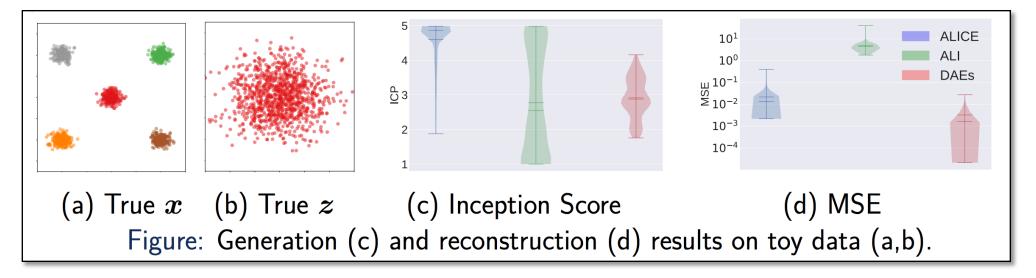


All these bivariate GAN models are learning to match the joint distributions: either using different methods, or in different problem setups.

Non-identifiable Issues ALICE A Unified View **Results**

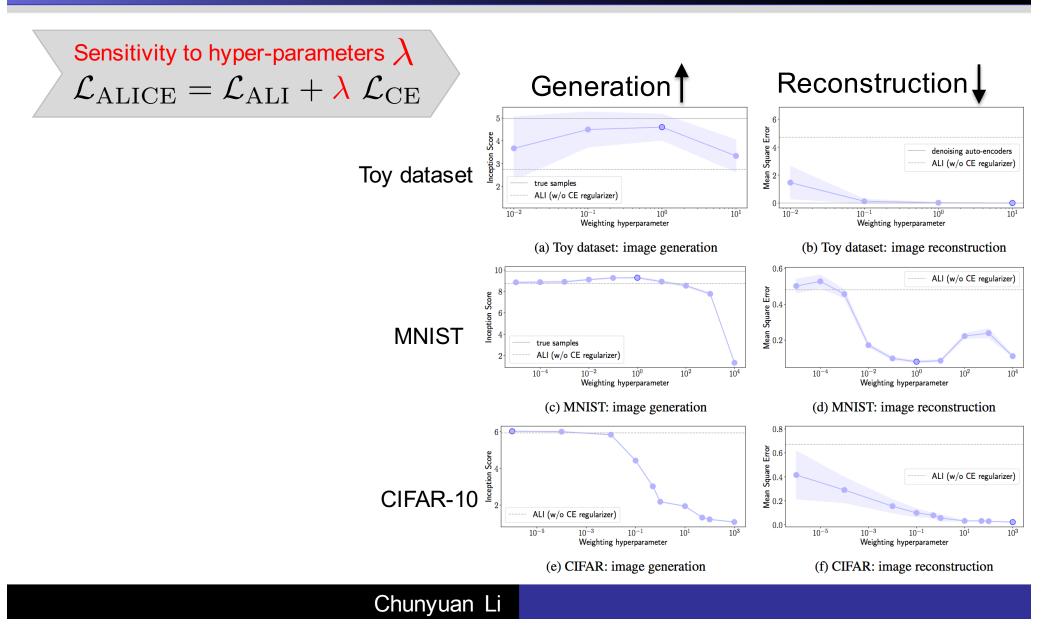
Results: Unsupervised Learning

Grid search over a set of hyper-parameters for 576 experiments



Non-identifiable Issues ALICE A Unified View **Results**

Results: Unsupervised Learning



Non-identifiable Issues ALICE A Unified View **Results**

Results: Semi-supervised Learning

ALICE for painting the cartoon "Alice's Wonderland", based on edges



Training set: two domains (edges and cartoon) and two modes (Alice and Rabbit)

ALICE: one pair in each mode is leveraged to resolve ambiguity

CycleGAN: mixing colors due to the non-identifiable issue

https://github.com/ChunyuanLI/Alice4Alice

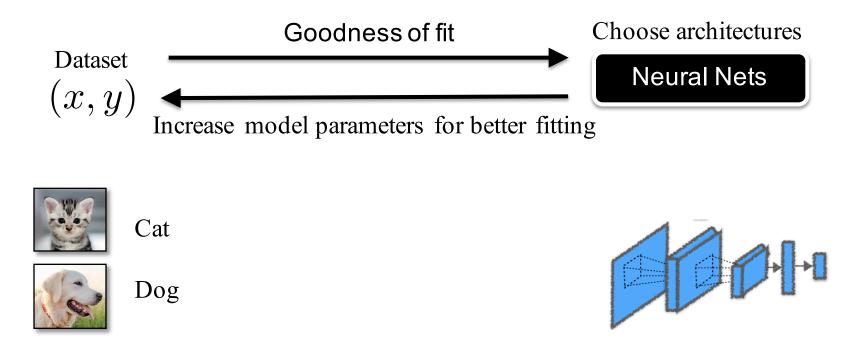
Measure the Intrinsic Dimension of Objective Landscapes

<u>C Li</u>, H Farkhoor, R Liu, J Yosinski. ICLR 2018 Measure the Intrinsic Dimension of Objective Landscapes

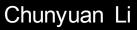
Subspace Training Definition and Property Quantitative Metrics

Motivation

Deep/Bayesian learning achieves better representations via increasing model complexity

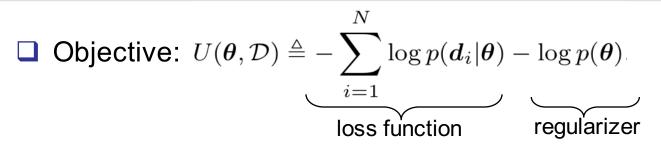


How many parameters are really needed?



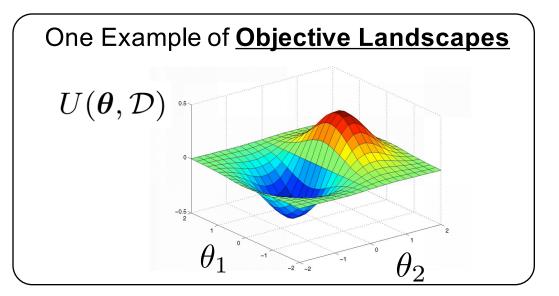
Subspace Training Definition and Property Quantitative Metrics

Objective Landscapes



• Datasets:
$$\mathcal{D} = \{ \boldsymbol{d}_i \}_{i=1}^N \ \boldsymbol{d}_i \triangleq (x_i, y_i)$$

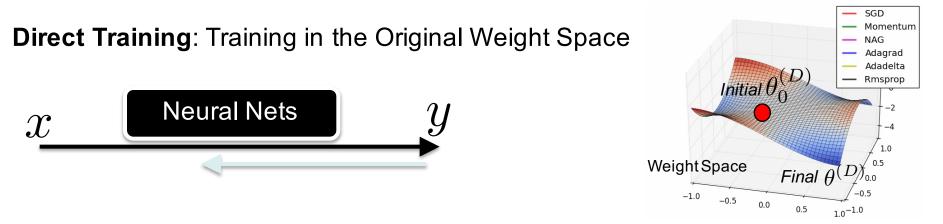
• Neural Nets: $\theta \in \mathbb{R}^D$



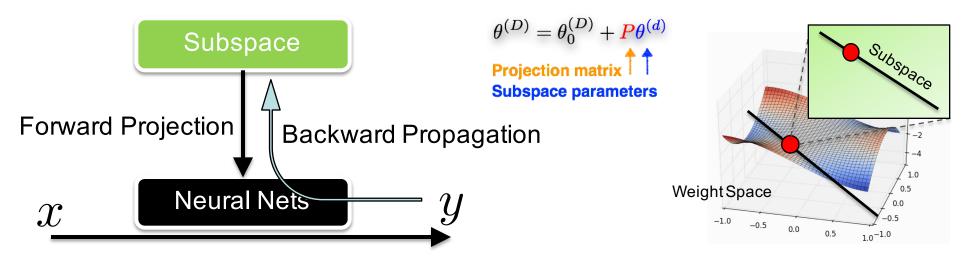
Subspace Training Definition and Property Quantitative Metrics

33/40

Direct vs. Subspace Training



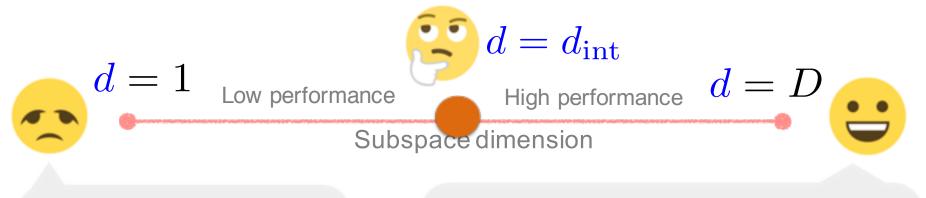
Subspace Training: Training in a Low Dimensional Orthogonal Space



Subspace Training Definition and Property Quantitative Metrics

Intrinsic dimension

As we increase d, we generally observe a sharp increase in network performance. This d is the **Intrinsic Dimension !**



1d random line search; Hard to find a good solution The entire space is spanned; Any available solutions can be discovered

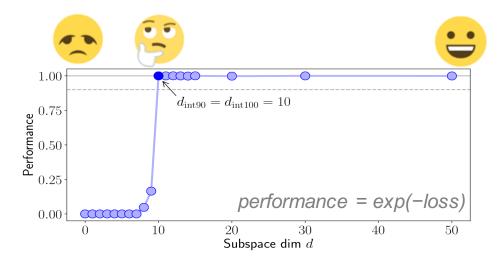
Subspace Training **Definition and Property** Quantitative Metrics

A Toy Problem

A simple objective with **1000 parameters** to optimize:

$$J(\theta) = \sum_{r=1}^{10} \|1 - \sum_{i=100r-99}^{100r} \theta_i\|^2$$

- 10 constraint: Provide the pair-wise fitting constraints
- Every 100 weights sum to one: Provide the functional constraints



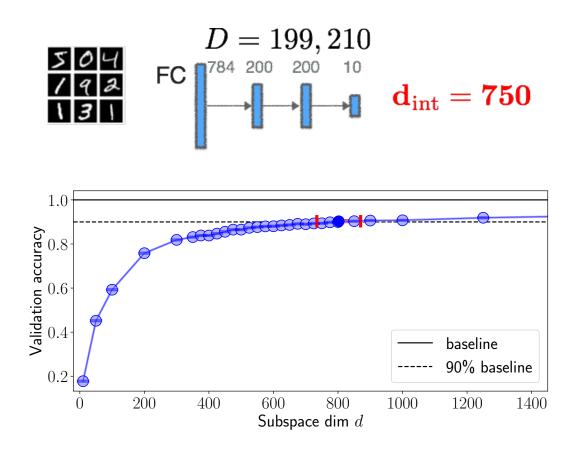
Generalize the concept to Neural Nets:

- **Datasets**: *Provide the pair-wise fitting constraints*
- Neural Nets Architectures: Provide the functional constraints

Subspace Training **Definition and Property** Quantitative Metrics

Some networks are very compressible

2-layer Fully Connected Networks (FC) on MNIST



Redundancy of the solution

 $\longrightarrow S \ge D - d_{\text{int}}$

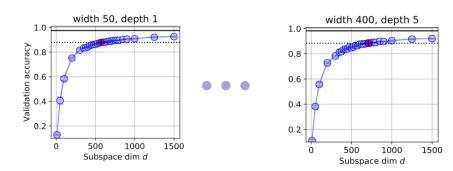
- **750 is less** than the number of input pixels (784) (A lot of image pixels are always black)
- High compression rate: 0.4%. Storage only requires 750 parameters + 1 seed
- Highly redundant solution: S > 199,210 - 750 = 198,460

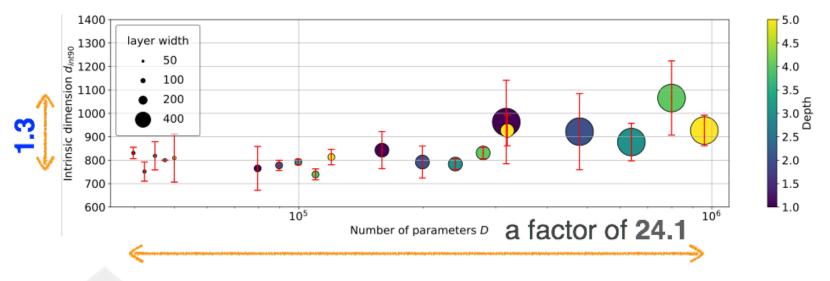
Subspace Training **Definition and Property** Quantitative Metrics

Robustness of intrinsic dimension

MNIST with 20 different FC's

Depth={1,2,3,4,5} Width={50,100,200,400}





- A stable metric across a family of models
- Every extra parameter added to the native space just goes directly toward increasing the redundancy of the solution set

Subspace Training Definition and Property Quantitative Metrics

Intrinsic Dimensions as Quantitative Metrics

\Box Objective: $U(\boldsymbol{\theta}, \mathcal{D})$

Fitness of Network Architectures

Fixing the dataset, d_int indicates the fitness of network architectures to the tasks.

<u>Case Study</u>: To achieve >50% validation accuracy on CIFAR, FC, LeNet and ResNet approximately requires d_int as 9K, 2.9K and 1K, respectively.

• Difficulty of Tasks/Datasets

Fixing the architecture, d_int indicates the difficulty level of specific tasks

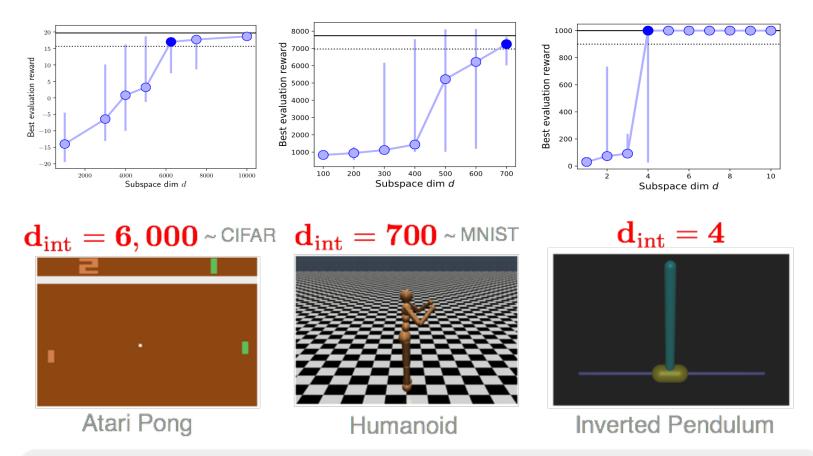
<u>Case Study</u>: The intrinsic dimension of 2-layer FC for MNIST and CIFAR is 750 and 9K, respectively.

Shuffled-label MNIST: 190K; ImageNet: >800K

Subspace Training Definition and Property Quantitative Metrics

Policy-based RL

Evolutionary Strategies (ES)



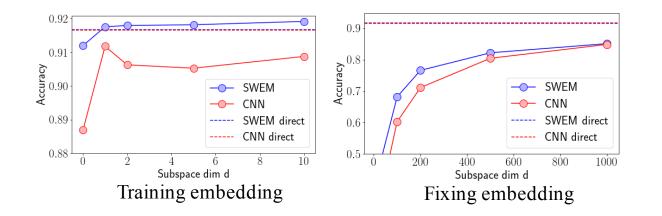
The low d_{int} suggests why random search and gradient-free methods work

Subspace Training Definition and Property Quantitative Metrics

Recent Development

□ Applications to Guiding Model Selection

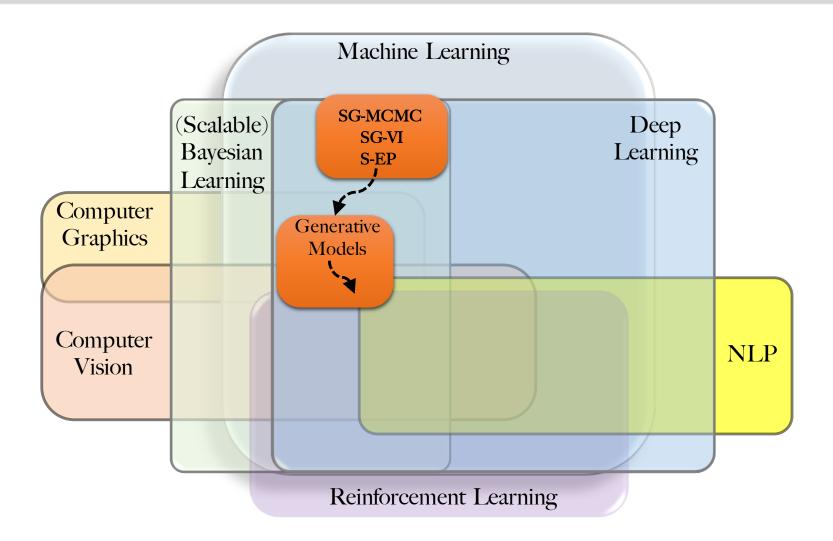
D. Shen et al. ACL 2018. Baseline Need More Love: On Simple Word-Embedding-Based Models (SWEM)



More Resource

- UBER Blog: <u>https://eng.uber.com/intrinsic-dimension/</u>
 - Code: <u>https://github.com/uber-research/intrinsic-dimension</u>
- YouTube Video

Summary: Learning Trajectory



Thanks!

Chunyuan Li

Duke University

Email: <u>chunyuan.li@hotmail.com</u> Web: <u>http://chunyuan.li/</u>