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Background

To train a generative model, we first collect a large amount of data in some domain (e.g., think of

images, sentences, or sounds, etc.) and then train a model to generate data like it.

“What | cannot create, | do not understand.”
—Richard Feynman

The trick is that the neural networks we use as
generative models (i.e. DGM) have a number of
parameters significantly smaller than the amount
of data we train them on, so the models are
forced to discover and efficiently internalize the
essence of the data in order to generate it.

https://openai.com/blog/generative-models/

| can learn from the data just fine *

data

model



https://openai.com/blog/generative-models/

Definition

[Generative Modeling: Tr = gg(z, e), Z r~ ’p(z); Goal Po~ (:L') = q(a:) }

Representation Learning: 2z = g¢,(m, C), T ~ q(:c)

Latent Space Observation Space
~generated distribution true data distribution
S
generative
Q model . .
2 || (neural net) s [loss| 1
peo(x) q(x)

https://openai.com/blog/generative-models/ € and ¢ are optional stochastic sources



https://openai.com/blog/generative-models/

Taxonomy

Most generative models have the basic setup of modeling data generation process but differ in the details.
Here are three popular examples:

Variational An encoder-decoder framework via probabilistic Simultaneously perform Generated samples
Autoencoders graphical models, where we are maximizing a lower both generation and tend to be slightly
(VAEs) bound on the log likelihood of the data inference with latent blurry

variables
Generative A generator-discriminator framework via an Generate the sharpest More difficult to
Adversarial adversarial training game. where we are directly samples optimize due to
Networks (GANSs) generating samples of the data unstable training

dynamic

Autoregressive
models

(e.g. PixelRNN,
Neural LM)

Factorize the joint distribution of data into the
conditional distributions, modeling every individual
dimension given previous dimensions

Simple and stable training,
yielding the best log
likelihood

Inefficient during
sampling and don’t
easily provide low-
dimensional features

https://openai.com/blog/generative-models/



https://openai.com/blog/generative-models/
https://arxiv.org/abs/1312.6114
https://en.wikipedia.org/wiki/Graphical_model
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1601.06759

Current Research Status

Most in Academia:
Theoretical principles/connections/advances of DGMs, and
their applications to new domains, e.g., language, music etc.

Your GAN is Secretly an Energy-based Model and You Should use
Discriminator Driven Latent Sampling

Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan Cao, Yoshua Bengio
(Submitted on 12 Mar 2020)

Variational Autoencoders and Nonlinear ICA: A Unifying Framework

llyes Khemakhem, Diederik P. Kingma, Ricardo Pio Monti, Aapo Hyvérinen

(Submitted on 10 Jul 2019 (v1), last revised 26 Feb 2020 (this version, v3))

Less for Practioners:

How Good are the Deep Generative Models Really? especially
when we face massive data in industrial practice?

“Two roads diverged in a wood and
| took the one less traveled by, and
that has made all the difference.”

-- Robert Frost




~ Turing-NLG
Megatron
At Scale: data & computing o
? 500 rr SERT
:;; oM Transformer L2
Current Trends: Strong empirical results via pre-training _ on
on massive data with massive computing NLM
o S r“-\(/) o © C{:\ o O_\-a Cﬁ']'l\’-)
is less studied at a large scale & v i
| have never afforded this much data L

@ Opportunity: How good could it be with pre-training?
OPTIMUS: Opportunities in Language Modeling

model
data

(2) Challenge: The traditional methods do NOT work well
FQ-GAN: Challenges in Image Generation

(3) Application: How could it benefit pre-training?
PREVALENT: Data augmentation for pre-training VLN



® Optimus: Organizing Sentences via
Pre-trained Modeling of a Latent Space

C. Li, X. Gao, V. Li, X. Li, B. Peng, Y. Zhang, J. Gao




Pre-trained Language Models (PLMs)

PLMs are great! Achieving state-of-the-art performance in various domains.

Existing PLMs

Understanding Generation Understanding & Generation
« BERT * GPT-2 * UniLM

* Roberta * Megatron « T5

 Albert * Turing e BART

Issue: Lack of explicit modeling of structures in a latent space, rendering it difficult to
control natural language generation / understanding from an abstract level



VAE at a small scale

A latent variable model, allowing generation and representation learning simultaneously
By representing sentences in a low-dimensional latent space, VAEs allow easy manipulation

Promise:
of sentences using the corresponding compact vector representations

Representation learning

/
Generation

Manipulation
.
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Latent Space

Sentence Space
breaks;

Issues of existing language VAEs:
Too small (e.g., 2-layer LSTM) that
KL vanishing, not really easy to train



Neural Language Models (NLM) & GPT-2

To generate a sentence of length 7T, * = [:1;1, - .- ,:f‘:T].
7

p(x) = [ [ polailz<). (1)
t=1

|

all tokens before t

Issues:
 The only source of variation is modeled in the conditionals at every step
* No high-level control of the sentence, such as tense, topics or sentiment



NLM vs VAE (decoder)

To generate a sentence of length 7T, * = [:1;1, SRR gl §
Latent variable
|
= Hpg(.z',_|.r<,). (1) pe(x|z) = H[)g T Ty, 2) (2)
= I t=1 T
o |
all tokens before t all tokens before t
Key Insight:

e Alatent variable z indicates high-level semantics to guide the sequential language generation



VAE (the full training objective)

* Encoder or inference network q(p(Z‘LB)
Framework

* Decoder or generation network pg(x|z)

Training Objective:

logpe(x) > LELBO = (3)

Eq@(z\m) [1(’]8_;;{}9(33|ZH _ KL((1¢(Z|$)‘|I)(’Z))

N N J N v J
Reconstruction Term KL Term

KL Vanishing Issue (Optional):
KL term degeneratesto 0
* VAE reduces to NLM, the learned features become identical to Gaussian prior (not informative at all)



Optimus -- Organizing sentences via Pre-Trained Modeling of a Universal Space

Settings

Why?

Pre-training dataset:

We focus on modeling sentences of a moderate length

* NOT text sequence chunks of fixed length
* NOT long-form text sequence such as paragraphs, document etc.

We deliberately keep a simple model:
* Only asingle low-dimensional latent vector to represent a sentence
* Controllability degraded for longer text sequences

This setting covers a large percentage of commonly seen sentences.

Wikipedia
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(a) Frequency distribution (b) Cumulative frequency distribution

We choose maximum length 64 to construct the pre-training dataset. It leads to
1990K sentences, which is 96.45% of entire Wikipedia dataset



Optimus -- Pre-training

Encoder Decoder

Architecture & ﬂ . m]_.—’@—."h — > X

Initialization

BI:.R T Wk WD/ Wu 9(: PT-2

we (O i _i 1 a
Latent Vector Injection  (z) [} lj . ﬁ Wp A
O RAELE
D - .\i Latent Word Positional

':1:0 - Lp—1 Tt

(a) Memory (b) Embedding

Pre-training Schedule . Cyclical annealing schedule for the KL term [*]

Figure 2: Illustration of two schemes to inject latent
vector. (a) Memory: x; attends both -, and hy.: (b)
Embedding: latent embedding is added into old embed-
dings to construct new token embedding A, .

* Dimension-wise thresholding of the KL term, with hyper-parameter A

[*] Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing H. Fu*,C. Li*, X. Liu, J. Gao, A. Celikyilmaz, L. Carin, NAACL 2019



Optimus -- Fine-tuning (1/3): Language Modeling

Generation capability: Perplexity(

)

Representation learning capability: Active units (

Fine-tuning pre-trained models for one epoch, evaluated with two types of metrics

) of z and its Mutual Information (V1) with x.

Dataset PTB YELP YAHOO SNLI
LM Repr. LM Repr. LM Repr. LM Repr.

Method PPL} |MI+ AUt |PPL| |MIt AU?T |PPL) |MIt AUY|PPL)|MIT AUT

A=005 | 2358 | 378 32 | 2199 | 254 32 | 2234 [ 534 32 | 1347 | 349 32
S A=010 | 2366 | 429 32 | 2199 | 287 32 | 2257 | 535 32 | 1348 | 465 32 * Pre-training is a new way to
Z A-025 | 2434 [ 598 32 | 2220 | 531 32 | 2243 | 601 32 | 1408 | 722 32 reduce KL vanishin
& A=050 | 2669 | 7.64 32 | 2279 | 7.67 32 | 23.11 | 885 32 | 1667 | 889 32 8

A=1.00 | 3553 | 818 32 | 2459 | 913 32 | 2492 | 918 32 | 2963 | 920 32
n MA. 10140 [ 0.00 0 [ 4039 [ 013 1 [6121 | 000 0 [2150 | 145 2 - :
< CA 108.81 | 1.27 5 66.93 | 277 4 | 2367 | 360 5 BELIEL AL AR U 2 LI B
= SA-VAE 170 8 | 6040 | 270 10 knowledge encoded in latent space
£ Aggressive | 99.83 | 0.83 4 | 3984 | 216 12 | 59.77 | 290 19 | 2116 | 138 5

AE-BP 96.86 | 531 32 | 47.97 | 7.89 32 | 59.28 | 808 32 | 21.64 | 771 32

GPT-2 2423 | - - 2340 ] - - [ 2200 | - - 168 | - -

LSTM-LM | 10047 | - - | 4260 | - 60.75 | - - 2144 | - -

LSTM-AE | - | 822 32 - 924 32 - 926 32 - 918 32




Optimus -- Fine-tuning (2/3): Guided Language Generation; Simple Manipulation

Sentence transfer via arithmetic operation

rp ~xp — TrA+ xc at the semantic level

Source x 4
a girl makes a silly face

Target = ;
two soccer players are playing soccer

Input =~

e a girl poses for a picture
e a girl in a blue shirt is taking pictures of a microscope
e a woman with a red scarf looks at the stars
e a boy is taking a bath

e a little boy is eating a bowl of soup

Output = p

e two soccer players are at a soccer game.

e two football players in blue uniforms are at a field hockey game
e two men in white uniforms are field hockey players

e two baseball players are at the baseball diamond

e two men are in baseball practice

Interpolating between two sentences z, = z;-(1—7)+ 22 7

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

children are looking for the water to be clear.
children are looking for the water.

children are looking at the water.

the children are looking at a large group of people.
the children are watching a group of people.
the people are watching a group of ducks.
the people are playing soccer in the field.
there are people playing a sport.

there are people playing a soccer game.
there are two people playing soccer.

there are two people playing soccer.

Compare with GPT-2, these are new ways
one can play with language generation



Optimus -- Fine-tuning (2/3): Guided Language Generation; Sophisticated Manipulation

Dialog response generation Dailydialog
Metrics | Seq2Seq | CVAE | WAE | iVAEy; | OPTIMUS
Recall 0232 | 0.265 | 0.289 | 0.355 0.362
Precision? | 0.232 | 0.222 | 0.266 | 0.239 0.313
F1+ 0232 | 0242 | 0277 | 0.285 0.336

Stylized response generation

Dailydialog + Holmes

Methods

Recall T ‘ Precision ‘ FI1T ‘ Neural T | N-gram T

StyleFusion | 0.374 0242 | 0294 [ 0.1050 | 0.1495
OpTIMUS | 0.385 0.268 | 0.316 | 0.1191 | 0.1645
Label-conditional text generation  velp
Metrics Control-Gen | ARAE | NN-Outlines | OPTIMUS
Accuracy 0.878 | 0.967 0.553 0.998
Bleu 0389 | 0.201 0.198 0.398
G-scoret 0.584 0.442 0.331 0.630
Self-Bleu 0.412 0.258 0.347 0.243

These tasks rely on a hierarchical generation process:
1. first the latent vector (the outlines of the target),
2. then target sentences

The pre-trained latent space alleviate the learning burden
of downstream tasks, thus improve performance



Optimus -- Fine-tuning (3/3): Low-resource Language Understanding

* Fine-tuning: both the pre-trained model and the linear classifier are updated;
* Feature-based: pre-trained mode weights are frozen to provide embeddings for the update of the classifier.

Feature-based method maintains the pre-trained smooth latent structures, and thus helps generalization

e
o)

Accuracy

Ye lp 0.7
0.6 af =@ Optimus Finetune |
v v W BERT Finetune
v - Optimus Feature
0519 vV -V BERT Feature
100 100 102 103 104
# Training samples (EI) OPT[M US (b) BERT
System MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE  WNLI Average
Dataset size 392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k 634
GLUE

BERT 0.414 0.146 0.673 0.731 0.187 0.690 0.812 0.549 0.577 0.531+0.011

Feature-based |y o | 0468 0.662 0720 0789 0.144 0719 0816 0.585 0.563  0.607=0.013




® Feature Quantization Improves GAN Training

Y. Zhao*, C. Li*, P. Yu, J. Gao, and C. Chen (*Equal contribution)




GANs

* Generator & ~ pg(x|z) implementedvia © = go(z), z ~ p(z)
Framework a
* Discriminator [, (x).
Training Objective: 11}9111 max Lean = Egga)|logo(fu(x))]+
w

Eimpg (x]|z),z~p(2) [1[J:.9)(1 — (]'(_I*w (i)))]

Data Distribution Matching: pg= (:L‘) = q(a:)

Feature Matching:  dr(p,q) = sup |Ezp@) /(%) — Ezga) f ()]
ferF



Poor estimate in a continuous feature space

1. Current mini-batch estimate 2. Even worse, fake data distribution is
scheme can be prohibitively changing during training. The underlying
Inaccurate when facing large or distribution is hard to capture.

complex datasets

1. Estimated using mini-batch statistics

d n

Feature Matching: d=(p,q) = sup | F:Ng;(:i:].f(ﬁf) — Hog(z)f ()]
feF

2. A dynamic distribution over time



From Continuous to Quantized Representations

E={e.cRP|kecl2, -- K}

Dictionary

* Limiting the feature space, enabling implicit feature matching

fo(@) = Jor © fus (@) * Jul@) = Jur o ]E © Jur ().

h' = fq(h) = ey, where k = afgﬂg_iﬂ Ih — ejl|2

Quantization

Generator Discriminator
Fake X True /| Fake
—>
True X
Bottom chtlonary Top

(a) FQ-GAN architecture (b) Dictionary look-up



Dictionary Learning

* Dictionary items are the feature centroids: a number of the most representative feature vectors

Lq=|sg(h) — el +8 |sglexr) — hl3 sg: stop-gradient
{JiL:linrl:ery loss f.:mnmil:;;ﬂn[ loss

* A dynamic & consistent dictionary:

T

er < my /Ny, where my + Amy + (1 — ) z R .
i=1

N +— AN, + (1 — )\)'H_;,:, (8)

The current mini-batch is enqueued to the dictionary, and
the oldest mini-batches in the queue are gradually removed.
The dictionary always represents a set of prototypes for

the recent features



FQ-GAN

* Training objective:
What'’s new?

minmax Lpqg_canNn = Loan +aLq. * Additional Parameters: Dictionary items
0, E w * Additional Regularizer: Feature quantization

e Applications to Image generation: position-wise quantization

Quantized Feature Maps

fQ Dictionary E
At a given position on the feature map, the feature vector
characterizes the local image region. It is quantized into its nearest
Channcl B | dictionary item, leading to a new quantized feature map
w y containing calibrated local feature prototypes
Width e
€L

Length



Quantized Feature Maps

Real

Fake

The dictionary items are visualized in 1D as the color-bar using t-SNE.

Image regions with similar semantics utilize the same/similar dictionary items. For example, bird neck
is in dark red, sky or clear background is in shallow blue, grass is in orange



Results (1/3): BigGANs for Image Generation

£l ajbrock / BigGAN-PyTorch

@ Watch 49 W% Star 1.8k Y Fork 265

Brock, et al. "Large scale GAN training for high fidelity natural image synthesis." ICLR 2018

Model | FID* | /Is*1 | FID}/IS?
SN-GAN 14.26/8.22 —
R-MMD-GAN 16.21 /8.291 —
BigGAN 6.04 /8.43 6.30+20/8.31+.12
FQ-BigGAN 5.34/8.50 5.59+.12/8.48+.03

Table 1. Comparison on CIFAR-10. This number is quoted
from (Wang et al., 2019)

Model | FID* | /Is*t | FID}/IS?
SN-GAN 16.77/7.01 —
TAC-GAN 7.22/9.347 —
FQO-TAC-GAN 7.15/9.74 7.21+.10/ 9.69+.04
BigGAN 8.64/9.46 9.01+.44/9.36+.10
FQ-BigGAN 7.36/9.62 7.42+.07/9.59+.04

Table 2. Comparison on CIFAR-100. This number is quoted
from (Gong et al., 2019).

) ). ) 1¢
Models | 64 x 64 | 128 x 128
| FID*|/IS*t | FID*|/IS*?
TAC-GAN - 23.75/ 28.86+0.29%

Half BigGaN | 12.75/21.84+034 |22.77/38.05+0.79%
Fo-BigGAN| 12.62/21.99+032 19.11/41.92+1.15
BigGAN | 10.55/25.43+0.15 | 14.88/63.03+1.421
FQ-BigGAN  9.67 / 25.96+0.24 14.08 / 54.36+1.07

256K

Table 3. Comparison on ImageNet-1000 for two resolutions. Both
models were trained for 256K iterations if not diverge early. The
top and bottom block shows the best results within half and full
of the entire training procedure, respectively. ' from (Gong et al.,
2019), T from (Brock et al., 2018), we cannot reproduce it using
their codebase, as the training diverges early.

TAC-GAN: "Twin Auxilary Classifiers GAN." NeurlPS 2019
M. Gong, Y. Xu, C. Li, K. Zhang, and K. B..




Results (1/3): BigGANSs for Image Generation

0.067 BigGAN
S 0.0 _ FQ-BigGAN | Feature matching quality per class
= 0.021 l
0.0 . . ' .
0 200 400 600 800 1000
Category Index (sorted by MMD)
2.0
a lo. | Image generation quality per class
0.2 1 ! ; - -
0 200 400 600 800 1000
Category Index (sorted by FID)
Model | ImageNet | CIFAR-100 | CIFAR-10
BigGAN 7d16h 12h12m 17h37m Training time comparison; Only 1~3% slower
FQ-BigGAN 7d19h 12h35m 17h50m

FQ-GAN significantly improves feature matching;
Improving GAN performance with minor computational overhead



Results (2/3): StyleGAN for Face Synthesis

NVlabs / stylegan ©OWatch 381 Wstar 91k  YFork 2k

Karras et al. “A Style-Based Generator Architecture for Generative Adversarial Networks”, CVPR 2019

Model | 32x 32 | 64 x 64 | 128 x 128 Full resolution FFHQ (1024 x 1024).
StyleGAN 3.28 4.82 6.33
FQ-StyleGAN |  3.01 4.36 5.98 StyleGANZ2: 3.31
Table 5. StyleGAN: Best FID-50k scores in FFHQ at different FQ-StyleGAN2:  3.19

resolutions.



Results (3/3): Unsupervised Image-to-Image Translation

E1taki0O112 / UGATIT

® Watch 166

o Star 4.6k ¥ Fork

783

Kim et al. “U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization

for Image-to-lmage Translation”, ICLR 2020

Model [ selfie2anime ‘ horse2zebra | cat2dog ‘ photo2portrait | photo2vangogh
UNIT 1471 £059 | 1044 £ 067 | 8.15 £ 048 1.20 + 0.31 4.26 +£0.29
CycleGAN 13.08 £ 049 | 8.05+0.72 | 8.92 +0.69 1.84 +0.34 5.46 + 033
U-GAT-IT 11.61 £057 | 7.06 £08 | 7.07 £0.65 1.79 + 0.34 428 +£0.33
FQ-U-GAT-IT | 11.40 £ 0.28 | 293 +0.36 | 6.44 +0.35 1.09 + 0.17 6.54 £ 0.18

Model anime2selfic | zebra2horse | dog2cat | portrait2photo | vangogh2photo
UNIT 26.32 £092 | 1493 £0.75 | 9.81 £0.34 1.42 +0.24 9.72 +£0.33
CycleGAN 11.84 £0.74 8.0 £ 0.66 9.94 +0.36 1.82 £ 0.36 4.68 +0.36
U-GAT-IT 11.52+057 | 747 +£0.71 | 8.15 £0.66 1.69 + 0.53 5.61 +£0.32
FQ-U-GAT-IT | 10.23 £ 040 | 7.10 £ 042 | 8.90 £0.32 0.73 + 0.16 5.21 £0.22

Table 6. KID x 100 for different image translation datasets. All numbers except for our FQ

variant are from (Kim et al.. 2020).

Model | baseline | FQ
selfie2anime 44.7 55.3
horse2zebra 36.2 63.8

cat2dog 34.0 66.0
photo2portrait 42.5 57.5
photo2vangogh 48.8 51.2

Table 7. User perceptual study on
translated image preference (in
percentage) between U-GAT-IT
and its FQ variant using AMT.




© Towards Learning a Generic Agent for

Vision-and-Language Navigation via Pre-training

W. Haox, C. Li*, X. Li, L. Carin and J. Gao (*Equal contribution), CVPR 2020



https://arxiv.org/abs/2002.10638

What is Vision-and-Language Navigation (VLN)?

* Input: language instructions X ; visual states S¢ at each time step t [Text Image Action }

X St —P Qg

« Goal: From a starting location, train an agent to navigate to the target location

« Output: take an action Q¢ (which direction to navigate) each step

State is a panoramic view

Instruction is given as natural languages Trajectory

L = [331,332,...,33[,] => T — [8070'073170'17"' 7ST7aT]-

w 1+ 1 4

{ ‘ ? Action is taken as one of discrete directions

Success case



A Generic Agent for Navigation Tasks

PREVALENT: PRE-TRAINED VISION-AND-LANGUAGE BASED NAVIGATOR

-

RZR

@ Attend Masked LM.
@ Action Prediction

Image-Text
Representation

RZR

Walk down
y and turnright
Image- - triplet
Pre-training —»

Fine-tuning

Text Image Action

X St —P at

Figure 1: Illustration of the proposed pre-training and fine-
tuning paradigm for VLN. The image-text-action triplets
are collected from the R2R dataset. The model is pre-
trained with two self-supervised learning objectives, and
fine-tuned for three tasks: R2R, CVND and HANNA. R2R
1s an in-domain task, where the language instruction is given
at the beginning, describing the full navigation path. CVND
and HANNA are out-of-domain tasks; the former is to nav-
igate based on dialog history, while the latter is an interac-
tive environment, where intermediate instructions are given
in the middle of navigation.



Pre-training dataset

We construct our pre-training dataset based on the Mat-terport3D Simulator

Dr: The training datasets of R2R: 104K image-text-action triplets

D2: We train an auto-regressive model (Speaker) on R2R, and employ

the model to synthesize 1,020K instructions for the shortest-path
trajectories on the Simulator: 6,482K image-text-action triplets.

Therefore, the size of pre-training dataset D= Di+ D2 is 6,582K.

Action

X St —P at

[Text Image

|

|

Text

X <¢—

Image Action

St

dt

|




Pre-training  Lowiwining = Lrvim + Lap

Lvim = —Esp(r).(r.2)~Dy L0g D(i] 2\, 8)

—E(a,8)~p(r),(r.2)~D5 l0g P(a|T[cLs), S)

Action Prediction Attended Masked LM.

Objectives 1i° Right
aues A (D DD - DO o @m-cth @
Cross-modal [ Cross-Attn + Self-Attn + FFN ]
Single-modal [ Self-Attn + FFN ] [ Self-Attn + FFN ]
Embeddings m m m m m m m m m m
Inputs =N

[CLS] Walk down and turn [MASK] [SEP]




Fine-tuning

SoTA on three navigation tasks; serving a strong baseline for future self-supervised learning methods for VLN

Validation Seen Validation Unseen Test Unseen Validation Unseen Test Unseen
Agent TL] NEJ] SRT SPLT TL] NEJ] SR?T SPLT TL}] NE| SR{T SPLT Agent Oracle Navigator Mixed Oracle Navigator Mixed
RANDOM 958 945 16 - 977 923 16 - 993 977 13 12 RANDOM 109 1.09 1.09 0.83 0.83 0.83
SEQ2SEQ 1133 601 39 - 839 781 22 - 8.13 7.85 20 18 SEQ2SEQ 1.23 1.98 2.10 125 211 2.35
RPA . 3556 43 - - 765 25 i 915 753 25 23 PREVALENT (Ours) 2.58 2.99 3.15 1.67 2.39 2.44
% SPEAKER-FOLLOWER - 336 66 - - 662 35 - 1482 662 35 28 SHORTEST PATH AGENT 836  7.99 9.58 8.06 8.48 9.76
E SMNA - - - - - - - - 18.04 5.67 48 35
© RCM+SIL(TRAIN) 10.65 3.53 67 - 1146 6.09 43 - 11.97 6.12 43 38 Table 2: Results on CVDN measured by Goal Progress. Blue indicates the best value in a given setting.
REGRETFUL - 323 69 63 - 532 50 41 13.69 5.69 48 40
FAsT - - - - 21.17 497 56 43 22.08 5.14 54 41
ENVDRoOP 11.00 399 62 59 10.70 522 52 48 11.66 5.23 51 47
PRESS 10.57 4.39 58 55 10.36 528 49 45 10.77 549 49 45 SEEN-ENV UNSEEN-ALL
PREVALENT (ours) 1032 3.67 69 65 10.19 4.71 58 53 10.51 530 54 51 Agent SRT SPLT NEJ| #R] SRT SPLT NEJ| #R]
N PRESS 1035 3.09 71 67 10.06 4.31 59 55 10.52 4.53 57 53 £ RANDOM WALK 0.54  0.33 1538 0.0 046  0.23 1534 0.0
PREVALENT 1031 3.31 67 63 998 4.12 60 57 10.21 452 59 56 &~ FORWARD 10 598 419 1461 00 636 478 1381 0.0
Human - - - - - - - - 11.85 1.61 86 76 NO ASSISTANCE 17.21 1376 1148 0.0 8.10 423 1322 0.0
ANNA 88.37 63.92 1.33 2.9 4745 2550 7.67 5.8
Table 1: Comparison with the state-of-the-art methods on R2R. Blue indicates the best value in a given setting. S indicates PREVALENT (Ours) ~ 83.82 59.38 147 34 5291 28.72 529 6.6
the single-instruction setting, M indicates the multiple-instruction setting. £ SHORTEST 100.00  100.00 0.0 0.0 100.00 100.00 0.0 0.0
%‘ Perfect assistance 90.99 68.87 091 2.5 8356 56.88 1.83 32

Table 3: Results on test splits of HANNA. The agent with “perfect assistance” uses the teacher navigation policy to make
decisions when executing a subtask from the assistant. Blue indicates the best value.



Conclusions

Model Types At a large scale Key Comments
VAE The first pre-trained
-- Opportunities in VAE model in
Language Modeling comparison with BERT
& GPT-2
GAN Stabilizing mini-batch

-- Challenges in
Image Generation

estimates for large
datasets

Autoregressive
models

-- Applications to
Vision-and-Language
Navigation

Generating samples to
augment datasets for
pre-training

| can probably approximately correctly -
learn from the data again =

data model

=F S

https://en.wikipedia.org/wiki/Probably approximately correct learning
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