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Why Self-Supervised Learning (SSL)?

« EsVIiT is a part of the bigger picture on Universal Multimodal Representation Learning

* Leveraging big unlabeled data to learn universal representations for a large range of downstream tasks
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* Three critical ingredients in the successful recipe: T

/NN
AERR .
wa Data: Easy to collect large amounts of raw data Web text corpus

@ (Pre-)Training objectives: SSL. enables the use of large no human-labeled data Masked Token Modeling

@ Network architectures: Transformers allows efficient training of large models Transformers




The current SoTA of SSL for Images 7
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* Web images

Transformers
Largest model: 1.75T

CNNs --> Transformers
Largest model: smaller than 1B

Sentence-level Contrastive
Learning: Next Sentence Prediction

Local dependencies: Masked Token
Modeling
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* View-Level Contrastive Learning
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The proposed method: @ Network architectures: A multi-stage Transformer architecture

@ Pre-training Objectives: A region-level pre-train task



@ Monolithic Transformer Architecture (Baseline)
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. . 4-stage: 2-2-6-2
@ Multi-stage Transformer Architecture (proposed) The number of Transformer in each stage
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Reduce compute complexity !

1. Sparse Self-Attention (S.A.) [ Transformer (Sparse S.A.) ] x Ms

2. Merging tokens for shorter sequences

T Repeated (eg, 4 stages)

Top layer feature maps
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* Smaller patches & Longer sequences
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Minimize cross-entropy »CV

@ Pre-train Task 1: view-level ‘/\V

Stop-g radient T

MLP Head

* Teacher: exponential moving average of student weights
Global Features

Model updates:

«  Student SGD wrt. Ly

Teacher

View1

Source: Emerging Properties in Self-Supervised Vision Transformers, 2021



Minimize cross-entropy LR

@ Pre-train Task 2: region-level // —_—_

mkﬁﬁ MA M M LA

Stop-gradient f # f * f
MLP Head | MLP Head

! | ‘ : Local Features

Teacher

¢ Compute the cross-entropy
between two most similar regions

* An analogy to masked token modeling in BERT:

For a region in a different augmented view, we
predict its soft-label provided by the teacher model

View1



@ Pre-train Tasks: both view- and region-level objectives

Global Token ! Local Tokens (Top-layer feature maps)
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Results of

'::' An intriguing property
Leaderboard Results

e
(&8 Transfer Learning



-ZE An intriguing Property of self-supervised Transformers

(a) DINO: Monolithic with Lv/ (b) ESViT: Multi-stage with L/ (c) EsViT: Multi-stage with L and LR
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Self-Supervised Image Classification on ImageNet

Other models - State-of-the-art models
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Oct. 2018: BERT in NLP appears,
Inspiring intensive interests in SSL for images

Source: https://paperswithcode.com/sota/self-supervised-image-classification-on

June 2021, EsViT
reaching SoTA
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Efficiency vs Accuracy

* 10x higher throughput, 3.5x smaller model size than prior arts

* Better scaling performance on accuracy vs. model size and throughput.

Model Size: 304 87
Throughput: 17 254

Linear probing accuracy (%)
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@Q@ Transfer Learning

Score (%)

* Procedure: Pre-training a generic purpose vision backbone, and fine-tuning a task-specific head per task

(Automatic hyper-parameter tuning is applied to ensure the comparison fairness)

* EsViT outperforms the supervised counterpart on 17 out of 18 classification tasks
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* Averaged scores: EsViT is comparable with CLIP, but uses 300x less pre-trained data

Method Settings Pre-training Data Averaged Scores
EsViT Self-supervised 1.2M images from ImageNet 80.99
Swin-T Supervised 1.2M image-label pairs from ImageNet 77.29
CLIP Weakly-supervised 400 M image-text pairs from web 80.86
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(g@?g) Why does SSL generalize better than supervised learning?
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Weakly-supervised Learning (i.e., CLIP)




Summary & Future works A Unified Multimodal Learning Framework

e Future works:

* Generalizing EsViT to multi-modal learning,

@ Network architectures: A multi-stage Transformer architecture

@ Pre-training Objectives: A region-level pre-train task

O GitHub https://github.com/microsoft/esvit

Personal Page:  http://chunyuan.li
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EsViT algorithm details

DINO updates teacher and student network alternatively: (i) Given a fixed teacher network, the
student network is updated by minimizing the cross-entropy loss: 05 < arg ming,  M(s, t;6;),
where M(s,t) = —p; log ps. (ii) The teacher model is updated as an exponential moving average

(EMA) on the student weights 8; < A\@: + (1 — \)0;, with \ following a cosine schedule from
0.996 to 1 during training. Please refer to [6] for details.
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Ablations on Networks Architectures and Pre-train Tasks

We briefly describe three schemes as follows, and benchmark them in the experiments. (i) Swin
Transformer [39]: A shifted window partitioning approach is proposed, which alternates between two
partitioning configurations in consecutive Transformer blocks, so that each local feature is grouped
into different windows in self-attentions. (ii) Vision Longformer (ViL) [70]: Features in each local
window are further allowed to attend all features in the 8-neighboring windows. (iii) Convolution
vision Transformer (CvT) [62]: Features in neighboring windows are considered in the convolutional
projection in self-attentions. Please refer each paper for detailed description.

Method #Param. Im./s \ Pre-train tasks | Linear k-NN

DeiT 21 1007 | L | 759 732
Ly 753" 67.51

ResNet-50 23 1237 £ 750 693
Lv+LR 757 71.2

. Lo 771 737
Swin 28 808 Lol 776  75.4

. L 773 739
L 28 386 Lv+Lr 77.5 745
L7 776 748

Gl 29 8B | L e 785 767

Table 8: Different sparse attentions in EsViT with and without £z. DeiT and ResNet-50 are shown
as references. ' indicates numbers reported in [6].



