EsViT: Efficient Self-supervised Vision Transformers for Representation Learning

-- Unleash the power of unlabeled big visual data

June, 2021

Chunyuan Li Deep Learning Team Microsoft Research, Redmond

Acknowledgements to the V-Team Members:

Chunyuan Li 1 Jianwei Yang 1 Pengchuan Zhang 1 Mei Gao 2 Bin Xiao 2 Xiyang Dai 2 Lu Yuan 2 Jianfeng Gao 1

¹Microsoft Research at Redmond, ²Microsoft Cloud + AI {chunyl,jianwyan,penzhan,xuga,bixi,xidai,luyuan,jfgao}@microsoft.com

Outline of this presentation

- Project Background & Motivations
- EsViT Method
- Results
- Future Works

Why Self-Supervised Learning (SSL)?

- EsViT is a part of the bigger picture on Universal Multimodal Representation Learning
- Leveraging big unlabeled data to learn universal representations for a large range of downstream tasks

Articles

"a cute dog"

SSL: A scaling success path

- A proved path: Scaling success in NLP
- SSL in CV?
 - Repeat the success in NLP
 - o Unleash the power of big unlabeled visual data

Data: Easy to collect large amounts of raw data

(Pre-)Training objectives: SSL enables the use of large no human-labeled data

Network architectures: Transformers allows efficient training of large models

Transformers

The current SoTA of SSL for Images?

Data

Network architectures

Pre-training objectives

NLP	CV
Web text corpus	Web images
TransformersLargest model: 1.75T	 CNNs> Transformers Largest model: smaller than 1B
Sentence-level Contrastive Learning: Next Sentence Prediction	View-Level Contrastive Learning Similar Augmented Views
 Local dependencies: Masked Token Modeling 	Dissimilar
"the cutest dog breeds always warm the coldest of hearts"	 Local region dependencies?

The proposed method: EsViT

Network architectures: A multi-stage Transformer architecture

Pre-training Objectives: A region-level pre-train task

Monolithic Transformer Architecture (Baseline)

Encoding

Multi-stage Transformer Architecture (proposed)

4-stage: 2-2-6-2

The number of Transformer in each stage

Reduce compute complexity!

- Sparse Self-Attention (S.A.)
- Merging tokens for shorter sequences

Cross-View

Prediction

Input Views:

• Smaller patches & Longer sequences

Pool

Minimize cross-entropy \mathcal{L}_{V}

Model updates:

• Student: SGD w.r.t. \mathcal{L}_{V}

• Teacher: exponential moving average of student weights

Pre-train Task 2: region-level

 Compute the cross-entropy between two most similar regions

An analogy to masked token modeling in BERT:

For a region in a different augmented view, we predict its soft-label provided by the teacher model

Pre-train Tasks: both view- and region-level objectives

Results of EsViT

An intriguing property

Leaderboard Results

An intriguing Property of self-supervised Transformers

(a) DINO: Monolithic with $\mathcal{L}_{
m V}$

Automatic discovery of semantic correspondence between local regions

(b) EsViT: Multi-stage with $\mathcal{L}_{
m V}$

(c) EsViT: Multi-stage with \mathcal{L}_V and \mathcal{L}_R

Self-Supervised Image Classification on ImageNet

Efficiency vs Accuracy

- 10x higher throughput, 3.5x smaller model size than prior arts
- Better scaling performance on accuracy vs. model size and throughput.

Circle sizes indicates model parameter counts

Transfer Learning

- Procedure: Pre-training a generic purpose **vision backbone**, and fine-tuning a **task-specific head** per task (Automatic hyper-parameter tuning is applied to ensure the comparison fairness)
- EsViT outperforms the supervised counterpart on 17 out of 18 classification tasks

Averaged scores: EsViT is comparable with CLIP, but uses 300x less pre-trained data

Method	Settings	Pre-training Data	Averaged Scores
EsViT	Self-supervised	1.2M images from ImageNet	80.99
Swin-T	Supervised	1.2M image-label pairs from ImageNet	77.29
CLIP	Weakly-supervised	400 M image-text pairs from web	80.86

Why does SSL generalize better than supervised learning?

Summary & Future works

- Future works:
 - Generalizing EsViT to multi-modal learning, Each modality is considered as a view

EsViT

Network architectures: A multi-stage Transformer architecture

Pre-training Objectives: A region-level pre-train task

https://github.com/microsoft/esvit

Personal Page: http://chunyuan.li

Thanks

Q & A

EsViT algorithm details

DINO updates teacher and student network alternatively: (i) Given a fixed teacher network, the student network is updated by minimizing the cross-entropy loss: $\theta_s \leftarrow \arg\min_{\theta_s} \mathcal{M}(s,t;\theta_s)$, where $\mathcal{M}(s,t) = -p_t \log p_s$. (ii) The teacher model is updated as an exponential moving average (EMA) on the student weights $\theta_t \leftarrow \lambda \theta_t + (1-\lambda)\theta_s$, with λ following a cosine schedule from 0.996 to 1 during training. Please refer to [6] for details.

$$\mathcal{L}_{V} = \frac{1}{|\mathcal{P}|} \sum_{(s,t)\in\mathcal{P}} \mathcal{M}_{V}(s,t), \text{ with } \mathcal{M}_{V}(s,t) = -p_{s} \log p_{t},$$

$$\mathcal{L}_{R} = \frac{1}{|\mathcal{P}|} \sum_{(s,t)\in\mathcal{P}} \mathcal{M}_{R}(s,t), \text{ with } \mathcal{M}_{R}(s,t) = -\frac{1}{T} \sum_{i=1}^{T} p_{j^{*}} \log p_{i}, \ j^{*} = \arg \max_{j} \frac{z_{i}^{T} z_{j}}{\|z_{i}\| \|z_{j}\|},$$
 (2)

Ablations on Networks Architectures and Pre-train Tasks

We briefly describe three schemes as follows, and benchmark them in the experiments. (i) Swin Transformer [39]: A shifted window partitioning approach is proposed, which alternates between two partitioning configurations in consecutive Transformer blocks, so that each local feature is grouped into different windows in self-attentions. (ii) Vision Longformer (ViL) [70]: Features in each local window are further allowed to attend all features in the 8-neighboring windows. (iii) Convolution vision Transformer (CvT) [62]: Features in neighboring windows are considered in the convolutional projection in self-attentions. Please refer each paper for detailed description.

Method	#Param.	Im./s	Pre-train tasks	Linear	k-NN
DeiT	21	1007	\mathcal{L}_V	75.9	73.2
ResNet-50	23	1237	$egin{array}{c} \mathcal{L}_V \ \mathcal{L}_V \ \mathcal{L}_V + \mathcal{L}_R \end{array}$	75.3 [†] 75.0 75.7	67.5 [†] 69.3 71.2
Swin	28	808	$egin{array}{c} \mathcal{L}_V \ \mathcal{L}_V \!+\! \mathcal{L}_R \end{array}$	77.1 77.6	73.7 75.4
ViL	28	386	$egin{array}{c} \mathcal{L}_V \ \mathcal{L}_V \!+\! \mathcal{L}_R \end{array}$	77.3 77.5	73.9 74.5
CvT	29	848	$egin{array}{c} \mathcal{L}_V \ \mathcal{L}_V \!+\! \mathcal{L}_R \end{array}$	77.6 78.5	74.8 76.7

Table 8: Different sparse attentions in EsViT with and without \mathcal{L}_R . DeiT and ResNet-50 are shown as references. † indicates numbers reported in [6].