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Overview

1. Motivations
2. Bayesian Deep Learning

! Stochastic9Gradient9MCMCs
! Weight9uncertainty9in9DNNs
! Connection9to9Dropout

3. Deep Bayesian Learning
! Non@identifiable9 issues9
! ALICE9algorithms
! Unified9views9for9bivariate9GANs

4. Intrinsic Dimension of Objective Landscape
! Definitions9
! Empirical9Results

5. Summary
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Popular9research9topics

Deep / Bayes Learning

Deep (Neural Nets) &9Bayesian Learning
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1987 2015

Popularity of topics

Year

Figures adapted from Teh’s talk at NIPS 2017

Dynamic topic modeling on NIPS papers

Bayes
prior
posterior
generative
MCMC
…

Deep
CNNs
RNNs
dropout
batch norm.
…

Geoffrey9Hinton Thomas9Bayes



Increasing9flexibility for representations

OutputInput

Hidden OutputInput

Deep Learning Bayesian Learning

Shallow models (e.g., logistic regression)

Deep models (e.g., multi-layer perceptron) Full distribution (e.g., MCMC)

Deep / Bayes Learning
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Point estimate (e.g., SGD)



Towards Better Representations

 

Q: Bring the best of both worlds?
A: New research topics:

Bayesian Deep Learning
Scalable Bayesian methods for the weight uncertainty of DNNs

Deep Bayesian Learning
DNNs as flexible representation methods in Bayesian models.
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Bayesian
Learning

Deep
Learning

Representation
Learning

Seek further understanding?
Intrinsic Dimension of Objective Landscape 

Increasing9Flexibility Increasing9Complexity

Deep / Bayes Learning
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Bayesian9Deep9Learning
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Problem Setup
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Given data ; in DNNs,
A model with parameters

Agent Environment

Actions

Observations

For testing input, Bayesian predictive distribution

Figures adapted from Teh’s talk at NIPS 2017

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets
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The9Pitfall9of9Stochastic9Optimization
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In optimization, the single ``best’’ point on training is used

The MAP approximates this expectation as

Parameter9uncertainty9is9ignored

Stochastic approximation 

loss function regularizer

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets
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Large@scale9Bayesian9Learning
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In Bayesian, the full posterior distribution after observing training set is used

Samples are used for prediction

" Accurate approximation
" Scalability to large datasets

Requirements:
�

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets
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SGEMCMC
SG@VI
S@EP



SGLD vs. SGD
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Stochastic Gradient Langevin Dynamics (SGLD) draws samples: 

SGLD is the SG-MCMC analog to SGD

where

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets
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Sampling Procedure of SGLD
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Sampling Dynamics: Approximated Histogram

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets
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Stochastic Gradient MCMC vs Optimization

C Li, C Chen, D Carlson, LCarin. AAAI 2016. Oral Presentation
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
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C Chen, D Carlson, Z. Gan, C Li, L Carin. AISTATS 2016. Oral Presentation
Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets
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Preconditioned SGLD
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Any preconditioning optimization algorithms (eg, RMSprop/Adagrad/K-FAC) 
as scalable sampling methods

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets
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Toy distribution
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Bayesian vs Optimization
pSGLD
Bayesian Neural Nets
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Applications to Deep Neural Nets
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C Li, A Stevens, C Chen, Y Pu, Z. Gan, LCarin. CVPR 2016, Spotlight Presentation
Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification

Z. Gan*, C Li*, C Chen, Y Pu, Q Su, L Carin. ACL 2017, Oral Presentation
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling

# Modern architectures and domains
CNNs in Computer Vision
RNNs in Natural Language Processing

# Advantages
Prevent Over-fitting
Uncertainty in Predictions

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets
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Advantage 1: Prevent Over@fitting

# InterpretationKof Dropout
Gaussian Dropout as SG-MCMC
Binary Dropout combined with SG-MCMC
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Bayesian vs Optimization
pSGLD
Bayesian Neural Nets
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Advantage 1: Prevent Over@fitting
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# Performance
Optimization converges faster on training, but overfit 
Uncertainty learned in training prevent over-fitting on testing

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets
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Advantage 2: Uncertainty in Prediction

# Beyond Prediction Means
Uncertainty is the std of multiple predictions
High uncertainty predictions tend to be on the boundary of mainfolds
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t-SNE embedding of prediction mean and std

Bayesian vs Optimization
pSGLD
Bayesian Neural Nets
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Deep9Bayesian9Learning
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C Li, H Liu, C Chen, Y Pu, L. Chen, R Henao, L Carin. NIPS 2017
ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching



Deep Generative Models

Generative9Adversarial9Networks9
(GAN)9

T2: Sample generation

NonEidentifiable Issues
ALICE
AUnified View
Results
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T1: Latent Variable Inference

Variational Autoencoders

(VAE)9

X

Z

X

Z

Observation

Latent
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Adversarial9Learning for Distribution Matching

! Adversarially9Learned9Inference9(ALI)
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X

Z

ALI: Discriminator takes in pair-wise samples: and

GAN: Discriminator takes in samples: and

NonEidentifiable Issues
ALICE
AUnified View
Results
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Non@identifiable Issues
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NonEidentifiable Issues
ALICE
AUnified View
Results
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…

…

# Joint distribution matching as shape matching of two probability measures

# The matched joint distribution can still have arbitrary shape

…

……



Non@identifiable Issues
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NonEidentifiable Issues
ALICE
AUnified View
Results
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Non@identifiable Issues
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NonEidentifiable Issues
ALICE
AUnified View
Results
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ALICE

/4154 1 0

# CE enforces correlation between random variables

(1)

Non@identifiable Issues
ALICE
AUnified View
Results
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https://github.com/ChunyuanLI/ALICE
Code:

CE is intractable in practice

Four algorithms are proposed to bound or approximate CE

 



Unsupervised Learning
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# Comments
Explicit method is easy to train, but could generate “blurred” samples
Implicit method is difficult to train, but potentially more “realistic” samples

(2)

Non@identifiable Issues
ALICE
AUnified View
Results
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Semi@supervised Learning
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Paired data

Unpaired data ALICE with cycle-consistency (when necessary)

ALICE with cross-domain mappings

(3)

Non@identifiable Issues
ALICE
AUnified View
Results
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A Unified Perspective
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Non@identifiable Issues
ALICE
AUnified View
Results
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ALI/BiGAN CycleGAN/DiscoGAN/DualGAN

Conditional GAN 

JointKdistributionKmatching

Paired samples

Unpaired samples

One@step Two@step

Setup

Method



A Unified Perspective
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GAN Loss

Non@identifiable Issues
ALICE
AUnified View
Results

ALI/BiGAN CycleGAN/DiscoGAN/DualGAN

JointKdistributionKmatching

One@step Two@step
Method

)
Cycle Loss )

Marginal Matching

Conditional Matching
) Joint Matching

Proof:
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(Two GAN Losses + Two Cycle Losses)



A Unified Perspective

/4154 1 0

Non@identifiable Issues
ALICE
AUnified View
Results

ALI/BiGAN

Conditional GAN 

JointKdistributionKmatching

Paired samples

Unpaired samples

Setup

)
Proof:
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A Unified Perspective
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Non@identifiable Issues
ALICE
AUnified View
Results

ALI/BiGAN CycleGAN/DiscoGAN/DualGAN

Conditional GAN 

JointKdistributionKmatching

Paired samples

Unpaired samples

One@step Two@step

Setup

Method

All these bivariate GAN models are learning to match the joint distributions:
either using different methods, or in different problem setups.
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Results: Unsupervised Learning
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Grid9search9over9a9set9of9hyper@parameters9for95769experiments

Non@identifiable Issues
ALICE
AUnified View
Results
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Results: Unsupervised Learning
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Non@identifiable Issues
ALICE
AUnified View
Results

Toy dataset

MNIST

CIFAR@10

Generation Reconstruction
Sensitivity to hyper@parameters

LALICE = LALI + � LCE

�
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Results: Semi@supervised Learning
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ALICE9for9painting9the9cartoon9“Alice’s9Wonderland”,9based9on9edges

Non@identifiable Issues
ALICE
AUnified View
Results
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https://github.com/ChunyuanLI/Alice4Alice

Code:



Measure the IntrinsicKDimensionKof
Objective Landscapes
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C Li, H Farkhoor, R Liu, J Yosinski. ICLR 2018
Measure the Intrinsic Dimension of Objective Landscapes

  



Motivation

How many parameters are really needed? 

Deep/Bayesian learning achieves better representations via increasing model complexity

Dataset
Neural Nets

(x, y)
Increase model parameters for better fitting

Choose architecturesGoodness of fit

Subspace Training
Definition and Property
Quantitative Metrics
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Cat

Dog



loss function regularizer

✓ 2 RD

# Objective:

Datasets:

Neural Nets:

Objective Landscapes

One9Example of Objective Landscapes

✓1 ✓2

Subspace Training
Definition and Property
Quantitative Metrics
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Direct vs. Subspace Training

Neural Nets
x

y

Direct Training: Training in the Original Weight Space

Subspace Training: Training in a Low Dimensional Orthogonal Space

Neural Nets
x

y

Subspace

Forward Projection Backward Propagation

WeightSpace

WeightSpace

Subspace Training
Definition and Property
Quantitative Metrics
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Initial

Final

✓(D)
0

✓(D)



Subspace dimension

Intrinsic dimension

Subspace Training
Definition and Property
Quantitative Metrics
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d = dint
d = 1 High9performanceLow performance d = D



# A simple objective with 1000 parameters to optimize:

10 constraint: Provide the pair-wise fitting constraints
Every 100 weights sum to one: Provide the functional constraints

A Toy Problem

# Generalize the concept to Neural Nets:
Datasets: Provide the pair-wise fitting constraints
Neural Nets Architectures: Provide the functional constraints

Subspace Training
Definition and Property
Quantitative Metrics
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performance2=2exp(−loss)2



# 2@layer Fully Connected Networks (FC) on MNIST

Some9networks9are9very9compressible9

Subspace Training
Definition and Property
Quantitative Metrics

Introduction
Bayesian Deep Learning
Deep Bayesian Learning

Intrinsic Dimension

/4154 1 0  

0 200 400 600 800 1000 1200 1400
Subspace dim d

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

ac
cu

ra
cy

baseline

90% baseline

Redundancy of the solution



# MNIST with 20 different FC’s

Robustness9of9intrinsic9dimension9

Depth={1,2,3,4,5} 
Width={50,100,200,400} 

…

Subspace Training
Definition and Property
Quantitative Metrics
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# Objective:

Fitness9of9Network Architectures9
Fixing9the9dataset,9d_int indicates9the9fitness9of9network9architectures9to9the9tasks.9

Difficulty9of9Tasks/Datasets
Fixing9the9architecture,9d_int indicates9 the9difficulty9level9of9specific9tasks9

Case Study:
The intrinsic dimension of 2-layer FC for 
MNIST and CIFAR is 750 and 9K, respectively.

Shuffled-label MNIST: 190K; ImageNet: >800K

Case Study:
To achieve >50% validation accuracy on CIFAR,
FC, LeNet and ResNet approximately requires d_int as 9K, 2.9K and 1K, respectively. 

Intrinsic Dimensions as Quantitative9Metrics

Subspace Training
Definition and Property
Quantitative Metrics
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Policy@based RL
Evolutionary Strategies (ES) 

Subspace Training
Definition and Property
Quantitative Metrics
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Recent Development

# More Resource
Blog: https://eng.uber.com/intrinsic-dimension/
Code: https://github.com/uber-research/intrinsic-dimension

YouTube Video

Subspace Training
Definition and Property
Quantitative Metrics
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# Applications to Guiding Model Selection
D. Shen et al. ACL 2018. Baseline Need More Love: On Simple Word-Embedding-Based Models (SWEM)

Training embedding Fixing embedding



Summary: Learning Trajectory
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Computer
Vision NLP

Reinforcement Learning

Deep
Learning

Computer
Graphics Generative

Models

SG-MCMC
SG-VI
S-EP

Machine Learning

(Scalable)
Bayesian
Learning



The9end

Thanks!

Chunyuan Li

Duke University

Email:9chunyuan.li@hotmail.com
Web:*http://chunyuan.li/


